Apidima Sapiens?

Two fossil skulls from Apidima, Greece, tell an intriguing story. The first, more than 210,000 years old, appears to be an early Homo sapiens. The second, a younger 170,000 years old, looks like a Neanderthal.

If so, then Homo sapiens moved to Greece, were replaced by Neanderthals, then thousands of years later moved back and replaced the Neanderthals (“replaced” is generally a polite word for “killed.”)

This is consistent with a fair amount of other evidence that Homo sapiens had (at least) two out-of-Africa events, of which the one that killed the Neanderthals was only the most recent. It could also represent the population wave that interbred with Neanderthals, contributing Sapiens DNA to the Neanderthal genome, well before the more famous interbreeding event when Neanderthal DNA entered our modern Homo sapiens genome.

On the other hand, there’s not a whole lot to these fossils. One is just the back of a skull. The back of a skull is more informative than it sounds on first glance because neanderthals have a bump (referred to as a “bun”) on the backs of their skulls that we don’t, but still, we’re not talking about complete skulls. So it could turn out that this was just a funny looking Neanderthal, or a piece that got pressed weirdly by a rock (the first Neanderthal skeleton people found had arthritis, which threw all of the illustrations off for decades, so these things can happen).

But throwing caution to the wind, let’s assume the skulls are correct, and so is the rough timeline I sketched out: Neanderthals inhabit Europe, Sapiens leave Africa, Sapiens push into the Middle East and Greece, Sapiens fail, Neanderthals retake the region, years pass, Sapiens try again and this time succeed, wiping out the Neanderthals.

What changed? What made the first attempt a failure and the second successful?

Aside from Sapiens generally getting smarter, I suggest a humble invention: the sewing needle.

We know from studies of lice (ew, I know) that humans began wearing clothes around 80-170,000 years ago. How do we know? Because the lice that live on our heads and the lice that infect our clothes are different species, and genetics claims that’s when they split.

The earliest known “looks like a needle” comes from Sibudu Cave, South Africa, and dates from about 61,000 years ago, but needles are small and easily broken, so I suspect that plenty were used that we haven’t found.

Neanderthals did not wear clothes–quoting Wikipedia, quoting archaeologist John F. Hoffecker:[102]

Neanderthal sites show no evidence of tools for making tailored clothing. There are only hide scrapers, which might have been used to make blankets or ponchos. This is in contrast to Upper Paleolithic (modern human) sites, which have an abundance of eyed bone needles and bone awls. Moreover, microwear analysis of Neanderthal hide scrapers shows that they were used only for the initial phases of hide preparation, and not for the more advanced phases of clothing production.

— John F. Hoffecker, The Spread of Modern Humans in Europe

Bodyhair_map_according_to_American_Journal_of_Physical_Anthropology_and_other_sourcesIf the Neanderthals did not have clothes, then they had to adapt to the European climate in other ways–probably fur.

(Incidentally, according to the only data I have on the matter, Mediterranean and Nordic peoples are oddly hairy, while Siberian people are weirdly not-hairy. If anyone has any idea why this is I’d love to hear it.)

If the first wave of Sapiens to leave Africa also did not have clothes (or had only very rudimentary clothes) and they lacked the Neanderthals’ fur, then they would have had a very difficult time surviving in the harsh European winters.

Like the Roanoke colony, the survivors may have happily gone over to the Neanderthal side.

By the time the second wave of Sapiens showed up, however, they had invented clothes–and had other elements of a more advanced cultural/technological toolkit that let them conquer the elements–and the ‘Thals.

Links Post: Evolution and More

road-to-bigger-brains
From State of the Science: Finding Human Ancestors in New Places

The Puerto Rican rainforest is beautiful and temporarily low on bugs. (Bugs, I suspect, evolve quickly and so can bounce back from these sorts of collapses–but they are collapses.)

More evidence for an extra Neanderthal or Denisovan interbreeding event in East Asians and Melanesian genomes:

 In addition to the reported Neanderthal and Denisovan introgressions, our results support a third introgression in all Asian and Oceanian populations from an archaic population. This population is either related to the Neanderthal-Denisova clade or diverged early from the Denisova lineage.

(Congratulations to the authors, Mondal, Bertranpetit, and Lao.)

Really interesting study on gene-culture co-evolution in Northeast Asia:

Here we report an analysis comparing cultural and genetic data from 13 populations from in and around Northeast Asia spanning 10 different language families/isolates. We construct distance matrices for language (grammar, phonology, lexicon), music (song structure, performance style), and genomes (genome-wide SNPs) and test for correlations among them. … robust correlations emerge between genetic and grammatical distances. Our results suggest that grammatical structure might be one of the strongest cultural indicators of human population history, while also demonstrating differences among cultural and genetic relationships that highlight the complex nature of human cultural and genetic evolution.

I feel like there’s a joke about grammar Nazis in here.

Why do we sleep? No one knows.

While humans average seven hours, other primates range from just under nine hours (blue-eyed black lemurs) to 17 (owl monkeys). Chimps, our closest living evolutionary relatives, average about nine and a half hours. And although humans doze for less time, a greater proportion is rapid eye movement sleep (REM), the deepest phase, when vivid dreams unfold.

Sleep is pretty much universal in the animal kingdom, but different species vary greatly in their habits. Elephants sleep about two hours out of 24; sloths more than 15. Individual humans vary in their sleep needs, but interestingly, different cultures vary greatly in the timing of their sleep, eg, the Spanish siesta. Our modern notion that people “should” sleep in a solid, 7-9 hour chunk (going so far as to “train” children to do it,) is more a result of electricity and industrial work schedules than anything inherent or healthy about human sleep. So if you find yourself stressed out because you keep taking a nap in the afternoon instead of sleeping through the night, take heart: you may be completely normal. (Unless you’re tired because of some illness, of course.)

Interestingly:

Within any culture, people also prefer to rest and rise at different times: In most populations, individuals range from night owls to morning larks in a near bell curve distribution. Where someone falls along this continuum often depends on sex (women tend to rise earlier) and age (young adults tend to be night owls, while children and older adults typically go to bed before the wee hours).

Genes matter, too. Recent studies have identified about a dozen genetic variations that predict sleep habits, some of which are located in genes known to influence circadian rhythms.

While this variation can cause conflict today … it may be the vestige of a crucial adaptation. According to the sentinel hypothesis, staggered sleep evolved to ensure that there was always some portion of a group awake and able to detect threats.

So they gave sleep trackers to some Hadza, who must by now think Westerners are very strange, and found that at any particular period of the night, about 40% of people were awake; over 20 nights, there were “only 18 one-minute periods” when everyone was asleep. That doesn’t prove anything, but it does suggest that it’s perfectly normal for some people to be up in the middle of the night–and maybe even useful.

Important dates in the evolution of human brain genes found:

In May, a pair of papers published by separate teams in the journal Cell focused on the NOTCH family of genes, found in all animals and critical to an embryo’s development: They produce the proteins that tell stem cells what to turn into, such as neurons in the brain. The researchers looked at relatives of the NOTCH2 gene that are present today only in humans.

In a distant ancestor 8 million to 14 million years ago, they found, a copying error resulted in an “extra hunk of DNA,” says David Haussler of the University of California, Santa Cruz, a senior author of one of the new studies.

This non-functioning extra piece of NOTCH2 code is still present in chimps and gorillas, but not in orangutans, which went off on their own evolutionary path 14 million years ago.

About 3 million to 4 million years ago, a few million years after our own lineage split from other apes, a second mutation activated the once non-functional code. This human-specific gene, called NOTCH2NL, began producing proteins involved in turning neural stem cells into cortical neurons. NOTCH2NL pumped up the number of neurons in the neocortex, the seat of advanced cognitive function. Over time, this led to bigger, more powerful brains. …

The researchers also found NOTCH2NL in the ancient genomes of our closest evolutionary kin: the Denisovans and the Neanderthals, who had brain volumes similar to our own.

And finally, Differences in Genes’ Geographic Origins Influence Mitochondrial Function:

“Genomes that evolve in different geographic locations without intermixing can end up being different from each other,” said Kateryna Makova, Pentz Professor of Biology at Penn State and an author of the paper. “… This variation has a lot of advantages; for example, increased variation in immune genes can provide enhanced protection from diseases. However, variation in geographic origin within the genome could also potentially lead to communication issues between genes, for example between mitochondrial and nuclear genes that work together to regulate mitochondrial function.”

Researchers looked at recently (by evolutionary standards) mixed populations like Puerto Ricans and African Americans, comparing the parts of their DNA that interact with mitochondria to the parts that don’t. Since mitochondria hail from your mother, and these populations have different ethnic DNA contributions along maternal and paternal lines. If all of the DNA were equally compatible with their mitochondria, then we’d expect to see equal contributions to the specifically mitochondria-interacting genes. If some ethnic origins interact better with the mitochondria, then we expect to see more of this DNA in these specific places.

The latter is, in fact, what we find. Puerto Ricans hail more from the Taino Indians along their mtDNA, and have relatively more Taino DNA in the genes that affect their mitochondria–indicating that over the years, individuals with more balanced contributions were selected against in Puerto Rico. (“Selection” is such a sanitized way of saying they died/had fewer children.)

This indicates that a recently admixed population may have more health issues than its parents, but the issues will work themselves out over time.

Two Denisovan Admixture Events?

Recent genetic analysis suggests that humans mated with the mysterious Denisovans not once, but twice

Asian genomes carry introgressed DNA from Denisovans and Neanderthals

East Asians show evidence of introgression from two distinct Denisovan populations

South Asians and Oceanians carry introgression from one Denisovan population

I can’t read the whole paper, because it’s paywalled, but if correct, this is quite the change. Previously, only small amounts of Denisovan were detected in East Asians, while large amounts (2-6%) were detected in Oceanians (ie, Melanesians, Papuans, and Australian Aborigines.) 

According to Wikipedia:

Statistical analysis of genomic DNA sequences from different Asian populations indicates that at least two distinct populations of Denisovans existed,[50][51] and that a second introgression event from Denisovans into humans occurred. A study of Han ChineseJapanese and Dai genomes revealed that modern East Asian populations include two Denisovan DNA components: one similar to the Denisovan DNA found in Papuan genomes, and a second that is closer to the Denisovan genome from the Altai cave. These components were interpreted as representing separate introgression events involving two divergent Denisovan populations. South Asians were found to have levels of Denisovan admixture similar to that seen in East Asians, but this DNA only came from the same single Denisovan introgression seen in Papuans.[52]  …

The Denisovans, in case you’re new here, are a human species similar to the Neanderthals who lived… well, we’re not sure exactly where they lived, other than the Altai Cave, Siberia. We also don’t know what they looked like, because we have only found a few of their bones–a finger bone and some teeth–but they might have looked a bit like the Red Deer Cave People. Remarkably, though, these were in good enough condition (Siberia preserves things very well,) to allow scientists to extract sufficient DNA to determine that they are indeed a human species, but one that split from the ancestors of Homo sapiens about 600,000-750,000 years ago, and from the Neanderthals about 200,000 years later. 

Just as Homo sapiens mated with Neanderthals, so Denisovans mated with Neanderthals and Homo sapiens–the human family tree is growing increasingly complex. 

We don’t know exactly where these interbreeding events happened, since we know so little about the Denisovans (at least one of the Neanderthal interbreeding events probably happened in the Middle East, given that all non-Africans [and some Africans] have Neanderthal DNA,) but a clue lies in the DNA of the Negrito peoples. 

The Negritoes are a variety of peoples who live in south east Asia and, like the Pygmies of Africa, are rather short. Some of them, like the Aeta of the Philippines, have almost Papuan levels of Denisovan admixture, while others, like the Onge of India, have almost none. Assuming the Negritos are related to each other and not just isolated examples of island dwarfism, this suggests that the interbreeding event really did take places somewhere east of the major Indonesian islands of Sumatra and Borneo (which probably weren’t islands at the time, but connected to the mainland). The Denisovans may have been clever enough to build boats and cross the Wallace Line, surviving in the more isolated islands of Indonesia and the Philippines. 

On a related note, the article I just linked to from John Hawks, “This is where Scientists Might Find the Next Hobbits,” is truly excellent: 

In May, an international team of scientists led by Thomas Ingicco revealed new archaeological findings from Kalinga, in the northernmost part of Luzon, Philippines. Until now, scientists have mostly assumed that the Philippines were first inhabited by modern humans, only after 100,000 years ago. But the artifacts unearthed by Ingicco and coworkers were much older, more than 700,000 years old. …

Luzon was never connected to the Asian mainland, even when sea level was at its lowest during the Ice Ages. To get there, ancient hominins had to float. Who were they, and how did they get there?

Timeline of ancient Indonesian and Filipino hominin findings, from John Hawks’s article

I recommend you read the whole thing.

What’s all of this Denisovan DNA good for, anyway? Quoting Wikipedia again:

The immune system’s HLA alleles have drawn particular attention in the attempt to identify genes that may derive from archaic human populations. Although not present in the sequenced Denisova genome, the distribution pattern and divergence of HLA-B*73 from other HLA alleles has led to the suggestion that it introgressed from Denisovans into humans in west Asia. As of 2011, half of the HLA alleles of modern Eurasians represent archaic HLA haplotypes, and have been inferred to be of Denisovan or Neanderthal origin.[54] The apparent over-representation of these alleles suggests a positive selective pressure for their retention in the human population. A higher-quality Denisovan genome published in 2012 reveals variants of genes in humans that are associated with dark skin, brown hair, and brown eyes – consistent with features found with Melanesians today.[16] A study involving 40 Han Chinese and 40 people of ethnic Tibetan background identified a region of DNA around the EPAS1 gene that assists with adaptation to low oxygen levels at high altitude found in Tibetans is also found in the Denisovan genome.[55][56] In Papuans, introgressed Neanderthal alleles have highest frequency in genes expressed in the brain, whereas Denisovan alleles have highest frequency in genes expressed in bones and other tissues.[57]

It is a great era in genetics. 

Book Club: The 10,000 Year Explosion pt. 2: Behavioral Modernity 

 

e3fa487b36f43641fc86d1fbe40665b4_preview_featured
Neanderthal skull

Welcome back to EvX’s book club. Today we’re discussing Cochran and Harpending’s The 10,000 Year Explosion: How Civilization Accelerated Human Evolution, chapter 2: The Neanderthal Within.

How did you like the chapter?

Unless I have missed a paper somewhere, this is a remarkable chapter, for The 10,000 Year Explosion was published in 2009, and the first Neanderthal genome showing more overlap with Europeans (and Asians) than Sub-Saharans was published in 2010. Greg and Henry did know of genetic evidence that humans have about 5% admixture from some archaic sister-species, but no one yet had evidence of which species, nor was there popular agreement on the subject. Many scientists still rejected the notion of Sapiens-Neanderthal interbreeding when Cochran and Harpending laid out their bold claim that not only had it happened, but it was a critical moment in human history, jump-starting the cultural cultural effervescence known as behavioral modernity.

Homo sapiens have been around for 300,000 years–give or take a hundred thousand–but for most of that time, we left behind rather few interesting artifacts. As the authors point out, we failed to develop agriculture during the Eemian interglacial (though we managed to develop agriculture at least 7 times, independently, during the current interglacial). Homo sapiens attempted to leave Africa several times before 70,000 years ago, but failed each time, either because they weren’t clever enough to survive in their new environment or couldn’t compete with existing hominins (ie, Neanderthals) in the area.

DBoAOVxWsAAYu6jSapiens’ technology didn’t do much interesting for the first couple hundred thousand years, either. Yet 70,000 years ago, sapiens did manage to leave Africa, displace the Neanderthals, spread into radically new climates, developed long distance trade and art, and eventually agriculture and everything we now enjoy here in the modern world.

According to Wikipedia, behavioral modernity includes:

Burial, fishing, art, self-decoration via jewelry or pigment, bone tools, sharp blades, hearths, multi-part tools, long-distance transportation of important items, and regionally distinct artifacts.

This leaves two important questions re: Cochran and Harpending’s theory. First, when exactly did behavioral modernity emerge, and second, was it a gradual transition or a sudden explosion?

Prehistoric art is tricky to date–and obviously did not always get preserved–but Blombos Cave, South Africa, currently contains our earliest piece, from about 70,000-100,000 years ago. The Blombos art is not figurative–it’s patterns of crosshatched lines–but there’s a fair amount of it. Blombos appears to have been an ochre-processing spot (the art is made with or on pieces of ochre) littered with thousands of leftover scraps. According to Wikipedia:

In 2008 an ochre processing workshop consisting of two toolkits was uncovered in the 100,000-year-old levels at Blombos Cave, South Africa.[3] Analysis shows that a liquefied pigment-rich mixture was produced and stored in the shells of two Haliotis midae (abalone), and that ochre, bone, charcoal, grindstones and hammer-stones also formed a composite part of the toolkits. As both toolkits were left in situ, and as there are few other archaeological remains in the same layer, it seems the site was used primarily as a workshop and was abandoned shortly after the pigment-rich compounds were made. Dune sand then blew into the cave from the outside, encapsulated the toolkits and by happenstance ensured their preservation before the next occupants arrived, possibly several decades or centuries later.

The application or use of the compound is not self-evident. No resins or wax were detected that might indicate it was an adhesive for hafting.

70 beads made from shells with holes drilled in them have also been found at Blombos.

Blombos is interesting, but the “art” is not actually very good–and we can’t say for sure that it was meant as art at all. Maybe the locals were just scraping the rocks to get the ochre off, for whatever purposes.

Indisputable art emerges a little later, around 40,000 years ago–simultaneously, it appears, in Europe, Asia, Australia, and Indonesia. The archaeology of Africa is less well-documented (in part because things just disintegrate quickly in some areas), but the earliest known sub-Saharan figurative art is about 26,000 years old. This art is both more advanced (it actually looks like art) and more abundant than its predecessors–the Sungir burial, dated to around 30,000-34,000 BC, for example, contains over 13,000 beads–a stark contrast to Blombos’s 70.

722px-homo_sapiens_lineage-svgIf a specific event triggered the simultaneous development of figurative art–and other aspects of behavioral modernity–in four different parts of the world, that event would logically have occurred before those groups split up. The timing of our interbreeding with Neanderthals–“In Eurasia, interbreeding between Neanderthals and Denisovans  with modern humans took place several times between about 100,000 and 40,000 years ago, both before and after the recent out-of-Africa migration 70,000 years ago”–is therefore temporaly perfect.

Subsequent back-migration could have then carried the relevant Neanderthal genomes into Africa–for regardless of where or how behavioral modernity started, all humans now have it.

So what do you think? Did we talk the Neanderthals to death? Did we get the gene for talking from the Neanderthals? Did we out-think them? Or did we just carry some disease or parasite that wiped them out? Or did they wipe themselves out via maternal death in labor, due to their enormous skulls?

(As for FOXP2, it appears that the version found in humans and Neanderthals is slightly different, so I find it a little doubtful that we got it from them.)

A couple of interesting quotes:

In several places, most clearly in central and southwestern France and part of northern Spain, we find a tool tradition that lasted from about 35,000 to 28,000 years ago (the Chatelperronian) that appears to combine some of the techniques of the Neanderthals … with those of modern humans. … Most important, there are several skeletons clearly associated with the Chatelperronian industry, and all are Neanderthal. This strongly suggests that there were interactions between the populations, enough that the Neanderthals learned some useful techniques from modern humans.

The smoking gene?

P. D. Evans and his colleagues at the University of Chicago looked at microcephalin (MCPH1), a very unusual gene that regulates brain size. They found that most people today carry a version that is quite uniform, suggesting that it originated recently. At the same time, it is very different from other, more varied versions found  at the same locus in humans today, all of which have many single-nucleotide differences among them. More than that, when there are several different versions of a gene at some locus, we normally find some intermediate versions created by recombination, that is, by chromosomes occasionally breaking and recombining. In the case of the unusual gene (called D for “derived”) at the microcephalin locus, such recombinants are very rare: It is as if the common, highly uniform version of microcephalin simply hasn’t been in the human race all that long in spite of the high frequency of the new version in many human populations. The researchers estimated that it appeared about 37,000 years ago (plus or minus a few tens of thousands of years.) And if it did show up then, Neanderthals are a reasonable, indeed likely, source.

So far as I know (and I looked it up a few weeks ago) no one has yet found microcephalin D in Neanderthals–and the date of 37,000 years ago sounds a bit too recent. However, we haven’t actually genotyped that many Neanderthals (it’s hard to find good 40,000 year old DNA), so we might just not have found it yet–and the date might simply be wrong.

It’s a remarkable genetic finding, even if it didn’t involve Neanderthals–and it might be simpler to dispense with other standards and define Homo sapiens as starting at this point.

On a related note, here’s a bit from Wikipedia about the ASPM gene:

A new allele (version) of ASPM appeared sometime between 14,100 and 500 years ago with a mean estimate of 5,800 years ago. The new allele has a frequency of about 50% in populations of the Middle East and Europe, it is less frequent in East Asia, and has low frequencies among Sub-Saharan African populations.[12] It is also found with an unusually high percentage among the people of Papua New Guinea, with a 59.4% occurrence.[13]

The mean estimated age of the ASPM allele of 5,800 years ago, roughly correlates with the development of written language, spread of agriculture and development of cities.[14] Currently, two alleles of this gene exist: the older (pre-5,800 years ago) and the newer (post-5,800 years ago). About 10% of humans have two copies of the new ASPM allele, while about 50% have two copies of the old allele. The other 40% of humans have one copy of each. Of those with an instance of the new allele, 50% of them are an identical copy.[15] The allele affects genotype over a large (62 kbp) region, a so called selective sweep which signals a rapid spread of a mutation (such as the new ASPM) through the population; this indicates that the mutation is somehow advantageous to the individual.[13][16]

Testing the IQ of those with and without new ASPM allele has shown no difference in average IQ, providing no evidence to support the notion that the gene increases intelligence.[16][17][18] However statistical analysis has shown that the older forms of the gene are found more heavily in populations that speak tonal languages like Chinese or many Sub-Saharan African languages.[19]

We still have so much to discover.

Neanderthal DNA–hey!–what is it good for?

Quite a bit.

First, a bit of history:

neanderthalmap
map of Neanderthal DNA in humans

It appears that there were (at least) 3 main cross-breeding events with Neanderthals. The first event most likely happened when one small band of humans had left Africa and ventured into the Middle East, where Neanderthals were living. The DNA acquired from that partnership can be found in all modern non-Africans, since they are all descended from this same group. (Since there has also been back-migration from the Middle East into Africa sometime in the past 70,000 years, many African groups also have a small amount of this DNA.)

Soon after, the group that became the Melanesians, Papuans, and Aborigines split off from the rest and headed east, where they encountered–and interbred with–the mysterious Denisovans, a third human species that we know mostly from DNA. Various sources claim this happened before the second neanderthal inter-breeding event, but just looking at the amount of admixed neanderthal in Oceanans suggests this is wrong.

Meanwhile, the rest of the non-African humans, probably still living in the Middle East or Eurasian Steppe, encountered a second band of Neanderthals, resulting in a second admixture event, shared by all Asians and Europeans, but not Melanesians &c. Then the Asians and Europeans went their separate ways, and the Asians encountered yet a third group of Neanderthals, giving them the highest rates of Neanderthal ancestry.

nature-siberian-neanderthals-17.02.16-v2

During their wanderings, some of these Asians encountered Melanesians, resulting in a little Denisovan DNA in today’s south Asians (especially Tibetans, who appear to have acquired some useful adaptations to Tibet’s high altitude from ancient Denisovans.)

There were other interbreeding events, including a much older one that left homo sapiens DNA in Neanderthals, and one that produced Denny, a Neanderthal/Denisovan hybrid. There were also interbreeding events in Africa, involving as-yet unidentified hominins. (In the human family tree to the right/above, Melanesians are included within the greater Asian clade.)

Who married whom? So far, we’ve found no evidence of Neanderthal mitochondrial DNA–passed from mothers to their children–in modern humans, so the pairings most likely involved Neanderthal men and human women. But we have also found extremely little Neanderthal DNA on the Y chromosome–so it is likely that they only had female children, or any male children they had were infertile.

Anthropogenesis-DenisovaAlleleMapInterestingly, we find higher amounts of Neanderthal DNA in older skeletons, like the 40,000 year old Tianyuan Man, or this fellow from Romania with 10% Neanderthal DNA, than in modern humans. Two potential explanations for the decrease: later mixing with groups that didn’t have Neanderthal DNA resulted in dilution, or people with more Neanderthal DNA just got out-competed by people with less.

Given the dearth of DNA on the Y chromosome and the number of diseases linked to Neanderthal DNA, including Lupus, Crohn’s, cirrhosis, and Type-2 diabetes, the fact that morphological differences between Sapiens and Neanderthals are large enough that we classify them as different species, and the fact that Neanderthals had larger craniums than Sapiens but Sapiens women attempting to give birth to hybrid children still had regular old Sapiens pelvises, gradual selection against Neanderthal DNA in humans seems likely.

However, the Neanderthals probably contributed some useful DNA that has been sorted out of the general mix and come down the ages to us. For example, the trait that allows Tibetans to live at high altitudes likely came from a Denisovan ancestor:

Researchers discovered in 2010 that Tibetans have several genes that help them use smaller amounts of oxygen efficiently, allowing them to deliver enough of it to their limbs while exercising at high altitude. Most notable is a version of a gene called EPAS1, which regulates the body’s production of hemoglobin. They were surprised, however, by how rapidly the variant of EPAS1spread—initially, they thought it spread in 3000 years through 40% of high-altitude Tibetans, which is the fastest genetic sweep ever observed in humans—and they wondered where it came from.

Modern humans have Neanderthal DNA variants for keratin (a protein found in skin, nails, hair, etc.,) and UV-light adaptations that likely helped us deal with the lower light levels found outside Africa. There’s circumstantial evidence that microcephalin D could have Neanderthal origins (it appeared about 37,000 years ago and is located primarily outside of Africa,) but no one has found microcephalin D in a Neanderthal, so this has not been proven. (And, indeed, another study has found that Neanderthal DNA tends not to be expressed in the brain.)

Yet on the other hand, Neanderthal admixture affected sapiens’ skull shapes:

Here, using MRI in a large cohort of healthy individuals of European-descent, we show that the amount of Neanderthal-originating polymorphism carried in living humans is related to cranial and brain morphology. First, as a validation of our approach, we demonstrate that a greater load of Neanderthal-derived genetic variants (higher “NeanderScore”) is associated with skull shapes resembling those of known Neanderthal cranial remains, particularly in occipital and parietal bones. Next, we demonstrate convergent NeanderScore-related findings in the brain (measured by gray- and white-matter volume, sulcal depth, and gyrification index) that localize to the visual cortex and intraparietal sulcus. This work provides insights into ancestral human neurobiology and suggests that Neanderthal-derived genetic variation is neurologically functional in the contemporary population.

(Not too surprising, given Neanderthals’ enormous craniums.)

Homo sapiens also received Neanderthal genes affecting the immune system, which were probably quite useful when encountering new pathogens outside of Africa, and genes for the “lipid catabolic process,”[19] which probably means they were eating new, fattier diets that Neanderthals were better adapted to digest.

Even Neanderthal-derived traits that today we cast as problems, like Type II Diabetes and depression, might have been beneficial to our ancestors:

“Depression risk in modern human populations is influenced by sunlight exposure, which differs between high and low latitudes, and we found enrichment of circadian clock genes near the Neanderthal alleles that contribute most to this association.”

Why would we find an association between Neanderthal DNA and circadian clock genes? Neanderthals had thousands of years more exposure to Europe’s long nights and cold winters than homo Sapiens’; it is unlikely that they developed these adaptations in order to become less well-adapted to their environment. It is more likely that Neanderthals downregulated their activity levels during the winter–to put it colloquially, they hibernated.

No problem for furry hunter-gatherers who lived in caves–much more problematic for information age workers who are expected to show up at the office at 9 am every day.

Type II diabetes affects digestion by decreasing the production of insulin, necessary for transporting converting carbs (glucose) into cells so it can be transformed into energy. However, your body can make up for a total lack of carbs via ketosis–essentially converting fats into energy.

Our hunter-gatherer ancestors–whether Neanderthal or Sapiens–didn’t eat a lot of plants during the European and Siberian winters because no a lot of plants grow during the winter. If they were lucky enough to eat at all, they ate meat and fat, like the modern Inuit and Eskimo.

And if your diet is meat and fat, then you don’t need insulin–you need ketosis and maybe some superior lipid digestion. (Incidentally, the data on ketogenic diets and type II diabetes looks pretty good.)

In sum, Neanderthal and Denisovan DNA, while not always useful, seems to have helped Homo sapiens adapt to colder winters, high altitudes, new pathogens, new foods, and maybe changed how we think and perceive the world.

 

 

Which Groups Have the most Neanderthal and Denisovan DNA?  

 

beautifulneanderthalDenisovan
Neanderthal and Denisovan contributions to different populations by chromosome (source)

Here are the numbers I’ve found so far for Neanderthal and Denisovan DNA in different populations:

 et al, in The Combined Landscape of Denisovan and Neanderthal Ancestry in Present-Day Humans, 2016, report:

Native Americans: 1.37%
Central Asia: 1.4%
East Asia: 1.39%
Oceana (Melanesians): 1.54%
South Asia: 1.19%
Europeans: 1.06%

(I have seen it claimed that the high Neanderthal percents for Oceanan populations (that is, Melanesians and their relatives,) could be a result of Denisovan DNA being incompletely distinguished from Neanderthal.)

Prufer et al, [pdf] 2017, report somewhat higher values:

East Asians: 2.3–2.6%
Europeans: 1.8–2.4%

While Lohse and Frantz estimate an even higher rate of between 3.4–7.3% for Europeans and East Asians. (They found 5.9% in their Chinese sample and 5.3% in their European.)

The Mixe and Karitiana people of Brazil have 0.2% Denisovan (source); other estimates for the amount of Denisovan DNA in Native populations are much lower–ie, 0.05%.

I found an older paper by Prufer et al with estimates for three Hispanic populations, but doesn’t clarify if they have Native American ancestry:

Population Individuals Neandertal ancestry (%)
Autosomes X
Europeans CEU–Euros from Utah 85 1.17±0.08 0.21±0.17
FIN–Finnish 93 1.20±0.07 0.19±0.14
GBR–British 89 1.15±0.08 0.20±0.15
IBS–Spain 14 1.07±0.06 0.23±0.18
TSI–Tuscan 98 1.11±0.07 0.25±0.20

East Asians CHB–Han Chinese Beijing 97 1.40±0.08 0.30±0.21
CHS–Han Chinese South 100 1.37±0.08 0.27±0.21
JPT–Japan, Tokyo 89 1.38±0.10 0.26±0.21

Americans CLM: Colombians from Medellin 60 1.14±0.12 0.22±0.16
MXL: Mexicans from LA 66 1.22±0.09 0.21±0.15
PUR: Puerto Ricans 55 1.05±0.12 0.20±0.15

Africans LWK: Luhya in Webuye, Kenya 97 0.08±0.02 0.04±0.07
ASW: African Americans South West US 61 0.34±0.22 0.07±0.11

Since the paper is older, all of its estimates are lower than current estimates, because we now have more Neanderthal DNA to compare against. However, you can still see the general trend.

The difference between “autosomes” and “X” highlighted here is that (IIRC) autosomes includes all chromosomes except the XY pair, and X is the X from that pair. They’re breaking them up this way because the X chromosome tends to have very little Neanderthal on it (and the Y even less), probably because Neanderthal DNA on these particular chromosomes was selected against.

Neanderthal DNA appears to have been selected for in areas that control hair and skin–people who had just left Africa were adapted to the African environment, and Neanderthal hair and skin traits helped them survive in colder, darker winters. We also see a lot of Neanderthal DNA influencing inflammation/immune response–these may have helped people fend off new diseases. But we see almost no Neanderthal (or Denisovan) DNA in areas of the genome that code for sperm, eggs, testes, ovaries, etc. These parts of people were probably already finely tuned to work together, didn’t need to change with the environment, and changing anything probably just made them less efficient–so Neanderthal (and Denisovan) DNA on the X and Y chromosomes has been purged from the Homo Sapiens gene pool.

North African Populations Carry Signature of Admixture with Neanderthals reports its data relative to the European average (which I believe is the CEU pop, 1.17%, so I’ll do the math for you to figure how much Neanderthal they have.)

Algeria 44.57% = 0.52% Neanderthal
Tunisia 100.16% = 1.172 N
Tunisia 138.13% = 1.6% N (This is an interesting population that has been highly endogamous and thus better reflects historical populations in the area.)
Egypt 58.45% = 0.68% N
Libya 56.36% = 0.66% N
Morroco North 69.17% = 0.81% N
Morocco South 17.90% = 0.21% N
Saharawi 50.90% = 0.6% N
Canary Island* 101.44% = 1.187% N
China Beijing 193.43% = 2.26 % N
China 195.41% = 2.29% N
Texas Indu Gupti 84.37% =0.987% N
Andalusia*118.66% = 1.39% N
Tuscan 94.90% = 1.11% N
Basque BASC 129.48% = 1.51% N
Galicia* GAL 115.86% = 1.36% N
Yoruba YRI  0.00% = 0% N
Luyha LWK  −14.89% = N

The authors note that they are not sure how the Luyha received a negative score–perhaps the presence of admixed DNA from yet another species is interfering with the results.

According to Wikipedia:

Denisovan DNA is most commonly found in Melanesians, Papulans, Aboriginal Australians and Aboriginal Filipinos, who all have similar amounts around 4-6%, indicating that they probably were all one group when their ancestors met the Denisovans. However, the similar-looking but historically quite isolated Onge people have no Denisovan–so they split off before the event.

In Papuans, Neanderthal DNA tends to be expressed in brain tissue, Denisovan in bones and other tissues.

Asians have a small amount of Denisovan DNA; Tibetans have a particular gene that lets them absorb oxygen effectively at high altitudes that they got from the Denisovans.

The Mende People of Sierra Leon may derive 13% of their DNA from an as-yet unknown hominin species (ancient DNA and bones do not preserve well in parts of Africa, so finding remains and identifying the species may be difficult.)

The Yoruba derive 8 or 9% of their DNA from the same hominin.

Masai have a small fraction of Neanderthal–since they are 30% non-African, probably about 0.35% of their genome–but you can read the paper yourself. 

Biaka Pygmies and Bushmen (San): 2% from an unknown archaic.

With more testing, better and more comprehensive numbers are sure to turn up.

Greatest Hits: Native Americans and Neanderthal DNA.

Native-American-populations
Source: Ancient Beringians: A Discovery Changing Early Native American History

Over the years, a few of my posts have been surprisingly popular–Turkey: Not very Turkic, Why do Native Americans Have so much Neanderthal DNA?, Do Black Babies have Blue Eyes? and Can Ice packs help stop a seizure (in humans)?

It’s been a while since these posts aired, so I thought it was time to revisit the material and see if anything new has turned up.

Today, lets revisit Native Americans and Neanderthal DNA:

I’m sorry, but I no longer think Native Americans (aka American Indians) have higher than usual levels of Neanderthal DNA. Sorry. Their Neanderthal DNA levels are similar to (but slightly lower than) those of other members of the Greater Asian Clade. They also have a small amount of Denisovan DNA–at least some of them.

Why the confusion? Some Neanderthal-derived alleles are indeed more common in Native Americans than in other peoples. For example, the Neanderthal derived allele SLC16A11 occurs in 10% of sampled Chinese, 0% of Europeans, and 50% of sampled Native Americans. (Today, this gene makes people susceptible to Type 2 diabetes, but it must have been very useful to past people to be found in such a large percent of the population.)

neanderthalmap

And there was one anomalously high Neanderthal DNA measure in Natives living near the Great Slave Lake, Canada. (Look, I didn’t name the lake.)

But this doesn’t mean all Native Americans possess all Neanderthal alleles in greater quantities.

So how much Neanderthal do Native Americans have? Of course, we can’t quite be sure, especially since only a few Neanderthals have even had their DNA analyzed, and with each new Neanderthal sequenced, we have more DNA available to compare against human genomes. But here are some estimates:

beautifulneanderthalDenisovan
Neanderthal and Denisovan contributions to different populations by chromosome (source)

 et al, in The Combined Landscape of Denisovan and Neanderthal Ancestry in Present-Day Humans, report:

Native Americans: 1.37%
Central Asia: 1.4%
East Asia: 1.39%
Oceana (Melanesians): 1.54%
South Asia: 1.19%
Europeans: 1.06%

I have seen it claimed that the high Neanderthal percents for Oceanan populations (that is, Melanesians and their relatives,) could be a result of Denisovan DNA being incompletely distinguished from Neanderthal.

Prufer et al, [pdf] 2017, report somewhat higher values:

East Asians: 2.3–2.6%
Europeans: 1.8–2.4%

While Lohse and Frantz estimate an even higher rate of between 3.4–7.3% for Europeans and East Asians. (They found 5.9% in their Chinese sample and 5.3% in their European.)

The Mixe and Karitiana people of Brazil have 0.2% Denisovan (source); other estimates for the amount of Denisovan DNA in Native populations are much lower–ie, 0.05%.

I found an older paper by Prufer et al with estimates for three Hispanic populations, but doesn’t clarify if they have Native American ancestry:

CLM–Colombians from Medellin: 1.14%
MXL–Mexicans in LA: 1.22%
PUR–Puerto Rico: 1.05%

Since this is an older paper, all of its estimates may be on the low side.

The absolute values of these numbers is probably less important than the overall ratios, since the numbers themselves are still changing as more Neanderthal DNA is uncovered. The ratios in different papers point to Native Americans having, overall, about the same amount of Neanderthal DNA as their relatives in East Asia.

Melanesians, though. There’s an interesting story lying in their DNA.

Denny: the Neanderthal-Denisovan Hybrid

Carte_Neandertaliens
Neanderthal Sites (source: Wikipedia)

Homo Sapiens–that is, us, modern humans, are about 200-300,000 years old. Our ancestor, Homo heidelbergensis, lived in Africa around 700,000-300,000 years ago.

Around 700,000 years ago, another group of humans split off from the main group. By 400,000 years ago, their descendants, Homo neanderthalensis–Neanderthals–had arrived in Europe, and another band of their descendants, the enigmatic Denisovans, arrived in Asia.

While we have found quite a few Neanderthal remains and archaeological sites with tools, hearths, and other artifacts, we’ve uncovered very few Denisovan remains–a couple of teeth, a finger bone, and part of an arm in Denisova Cave, Russia. (Perhaps a few other remains I am unaware of.)

Yet from these paltry remains scientists have extracted enough DNA to ascertain that no only were Denisovans a distinct species, but also that Melanesians, Papuans, and Aborigines derive about 3-6% of their DNA from a Denisovan ancestors. (All non-African populations also have a small amount of Neanderthal DNA, derived from a Neanderthal ancestors.)

If Neanderthals and Homo sapiens interbred, and Denisovans and Homo sapiens interbred, did Neanderthals and Denisovans ever mate?

nature-siberian-neanderthals-17.02.16-v2
The slightly more complicated family tree, not including Denny

Yes.

The girl, affectionately nicknamed Denny, lived and died about 90,000 years ago in Siberia. The remains of an arm, found in Denisova Cave, reveal that her mother was a Neanderthal, her father a Denisovan.

We don’t yet know what Denisovans looked like, because we don’t have any complete skeletons of them, much less good skulls to examine, so we don’t know what a Neanderthal-Denisovan hybrid like Denny looked like.

But the fact that we can extract so much information from a single bone–or fragment of bone–preserved in a Siberian cave for 90,000 years–is amazing.

We are still far from truly understanding what sorts of people our evolutionary cousins were, but we are gaining new insights all the time.

When did language evolve?

The smartest non-human primates, like Kanzi the bonobo and Koko the gorilla, understand about 2,000 to 4,000 words. Koko can make about 1,000 signs in sign language and Kanzi can use about 450 lexigrams (pictures that stand for words.) Koko can also make some onomatopoetic words–that is, she can make and use imitative sounds in conversation.

A four year human knows about 4,000 words, similar to an exceptional gorilla. An adult knows about 20,000-35,000 words. (Another study puts the upper bound at 42,000.)

Somewhere along our journey from ape-like hominins to homo sapiens sapiens, our ancestors began talking, but exactly when remains a mystery. The origins of writing have been amusingly easy to discover, because early writers were fond of very durable surfaces, like clay, stone, and bone. Speech, by contrast, evaporates as soon as it is heard–leaving no trace for archaeologists to uncover.

But we can find the things necessary for speech and the things for which speech, in turn, is necessary.

The main reason why chimps and gorillas, even those taught human language, must rely on lexigrams or gestures to communicate is that their voiceboxes, lungs, and throats work differently than ours. Their semi-arborial lifestyle requires using the ribs as a rigid base for the arm and shoulder muscles while climbing, which in turn requires closing the lungs while climbing to provide support for the ribs.

Full bipedalism released our early ancestors from the constraints on airway design imposed by climbing, freeing us to make a wider variety of vocalizations.

Now is the perfect time to break out my file of relevant human evolution illustrations:

Source: Scientific American What Makes Humans Special

We humans split from our nearest living ape relatives about 7-8 million years ago, but true bipedalism may not have evolved for a few more million years. Since there are many different named hominins, here is a quick guide:

Source: Macroevolution in and Around the Hominin Clade

Australopithecines (light blue in the graph,) such as the famous Lucy, are believed to have been the first fully bipedal hominins, although, based on the shape of their toes, they may have still occasionally retreated into the trees. They lived between 4 and 2 million years ago.

Without delving into the myriad classification debates along the lines of “should we count this set of skulls as a separate species or are they all part of the natural variation within one species,” by the time the homo genus arises with H Habilis or H. Rudolfensis around 2.8 million years ag, humans were much worse at climbing trees.

Interestingly, one direction humans have continued evolving in is up.

Oldowan tool

The reliable production of stone tools represents an enormous leap forward in human cognition. The first known stone tools–Oldowan–are about 2.5-2.6 million years old and were probably made by homo Habilis. These simple tools are typically shaped only one one side.

By the Acheulean–1.75 million-100,000 years ago–tool making had become much more sophisticated. Not only did knappers shape both sides of both the tops and bottoms of stones, but they also made tools by first shaping a core stone and then flaking derivative pieces from it.

The first Acheulean tools were fashioned by h Erectus; by 100,000 years ago, h Sapiens had presumably taken over the technology.

Flint knapping is surprisingly difficult, as many an archaeology student has discovered.

These technological advances were accompanied by steadily increasing brain sizes.

I propose that the complexities of the Acheulean tool complex required some form of language to facilitate learning and teaching; this gives us a potential lower bound on language around 1.75 million years ago. Bipedalism gives us an upper bound around 4 million years ago, before which our voice boxes were likely more restricted in the sounds they could make.

A Different View

Even though “homo Sapiens” has been around for about 300,000 years (or so we have defined the point where we chose to differentiate between our species and the previous one,) “behavioral modernity” only emerged around 50,000 years ago (very awkward timing if you know anything about human dispersal.)

Everything about behavioral modernity is heavily contested (including when it began,) but no matter how and when you date it, compared to the million years or so it took humans to figure out how to knap the back side of a rock, human technologic advance has accelerated significantly over the past 100,000 and even moreso over the past 50,000 and even 10,000.

Fire was another of humanity’s early technologies:

Claims for the earliest definitive evidence of control of fire by a member of Homo range from 1.7 to 0.2 million years ago (Mya).[1] Evidence for the controlled use of fire by Homo erectus, beginning some 600,000 years ago, has wide scholarly support.[2][3] Flint blades burned in fires roughly 300,000 years ago were found near fossils of early but not entirely modern Homo sapiens in Morocco.[4] Evidence of widespread control of fire by anatomically modern humans dates to approximately 125,000 years ago.[5]

What prompted this sudden acceleration? Noam Chomsky suggests that it was triggered by the evolution of our ability to use and understand language:

Noam Chomsky, a prominent proponent of discontinuity theory, argues that a single chance mutation occurred in one individual in the order of 100,000 years ago, installing the language faculty (a component of the mind–brain) in “perfect” or “near-perfect” form.[6]

(Pumpkin Person has more on Chomsky.)

More specifically, we might say that this single chance mutation created the capacity for figurative or symbolic language, as clearly apes already have the capacity for very simple language. It was this ability to convey abstract ideas, then, that allowed humans to begin expressing themselves in other abstract ways, like cave painting.

I disagree with this view on the grounds that human groups were already pretty widely dispersed by 100,000 years ago. For example, Pygmies and Bushmen are descended from groups of humans who had already split off from the rest of us by then, but they still have symbolic language, art, and everything else contained in the behavioral modernity toolkit. Of course, if a trait is particularly useful or otherwise successful, it can spread extremely quickly (think lactose tolerance,) and neither Bushmen nor Pygmies were 100% genetically isolated for the past 250,000 years, but I simply think the math here doesn’t work out.

However, that doesn’t mean Chomsky isn’t on to something. For example, Johanna Nichols (another linguist,) used statistical models of language differentiation to argue that modern languages split around 100,000 years ago.[31] This coincides neatly with the upper bound on the Out of Africa theory, suggesting that Nichols may actually have found the point when language began differentiating because humans left Africa, or perhaps she found the origin of the linguistic skills necessary to accomplish humanity’s cross-continental trek.

Philip Lieberman and Robert McCarthy looked at the shape of Neanderthal, homo Erectus, early h Sapiens and modern h Sapiens’ vocal tracts:

In normal adults these two portions of the SVT form a right angle to one another and are approximately equal in length—in a 1:1 proportion. Movements of the tongue within this space, at its midpoint, are capable of producing tenfold changes in the diameter of the SVT. These tongue maneuvers produce the abrupt diameter changes needed to produce the formant frequencies of the vowels found most frequently among the world’s languages—the “quantal” vowels [i], [u], and [a] of the words “see,” “do,” and “ma.” In contrast, the vocal tracts of other living primates are physiologically incapable of producing such vowels.

(Since juvenile humans are shaped differently than adults, they pronounce sounds slightly differently until their voiceboxes fully develop.)

Their results:

…Neanderthal necks were too short and their faces too long to have accommodated equally proportioned SVTs. Although we could not reconstruct the shape of the SVT in the Homo erectus fossil because it does not preserve any cervical vertebrae, it is clear that its face (and underlying horizontal SVT) would have been too long for a 1:1 SVT to fit into its head and neck. Likewise, in order to fit a 1:1 SVT into the reconstructed Neanderthal anatomy, the larynx would have had to be positioned in the Neanderthal’s thorax, behind the sternum and clavicles, much too low for effective swallowing. …

Surprisingly, our reconstruction of the 100,000-year-old specimen from Israel, which is anatomically modern in most respects, also would not have been able to accommodate a SVT with a 1:1 ratio, albeit for a different reason. … Again, like its Neanderthal relatives, this early modern human probably had an SVT with a horizontal dimension longer than its vertical one, translating into an inability to reproduce the full range of today’s human speech.

It was only in our reconstruction of the most recent fossil specimens—the modern humans postdating 50,000 years— that we identified an anatomy that could have accommodated a fully modern, equally proportioned vocal tract.

Just as small children who can’t yet pronounce the letter “r” can nevertheless make and understand language, I don’t think early humans needed to have all of the same sounds as we have in order to communicate with each other. They would have just used fewer sounds.

The change in our voiceboxes may not have triggered the evolution of language, but been triggered by language itself. As humans began transmitting more knowledge via language, humans who could make more sounds could utter a greater range of words perhaps had an edge over their peers–maybe they were seen as particularly clever, or perhaps they had an easier time organizing bands of hunters and warriors.

One of the interesting things about human language is that it is clearly simultaneously cultural–which language you speak is entirely determined by culture–and genetic–only humans can produce language in the way we do. Even the smartest chimps and dolphins cannot match our vocabularies, nor imitate our sounds. Human infants–unless they have some form of brain damage–learn language instinctually, without conscious teaching. (Insert reference to Steven Pinker.)

Some kind of genetic changes were obviously necessary to get from apes to human language use, but exactly what remains unclear.

A variety of genes are associated with language use, eg FOXP2. H Sapiens and chimps have different versions of the FOXP2 gene, (and Neanderthals have a third, but more similar to the H Sapiens version than the chimp,) but to my knowledge we have yet to discover exactly when the necessary mutations arose.

Despite their impressive skulls and survival in a harsh, novel climate, Neanderthals seem not to have engaged in much symbolic activity, (though to be fair, they were wiped out right about the time Sapiens really got going with its symbolic activity.) Homo Sapiens and Homo Nanderthalis split around 800-400,000 years ago–perhaps the difference in our language genes ultimately gave Sapiens the upper hand.

Just as farming appears to have emerged relatively independently in several different locations around the world at about the same time, so behavioral modernity seems to have taken off in several different groups around the same time. Of course we can’t rule out the possibility that these groups had some form of contact with each other–peaceful or otherwise–but it seems more likely to me that similar behaviors emerged in disparate groups around the same time because the cognitive precursors necessary for those behaviors had already begun before they split.

Based on genetics, the shape of their larynges, and their cultural toolkits, Neanderthals probably did not have modern speech, but they may have had something similar to it. This suggests that at the time of the Sapiens-Neanderthal split, our common ancestor possessed some primitive speech capacity.

By the time Sapiens and Neanderthals encountered each other again, nearly half a million years later, Sapiens’ language ability had advanced, possibly due to further modification of FOXP2 and other genes like it, plus our newly modified voiceboxes, while Neanderthals’ had lagged. Sapiens achieved behavioral modernity and took over the planet, while Neanderthals disappeared.

 

Open Thread: Hot Cocoa, Neanderthal Boats, Sadists and Incompetents

imagesIt’s been a slow week for comments, probably because everyone is still passed out/out of town/tired/sick/busy from all of the holiday revelry. Some of you are still celebrating. Still, I invite you all to come in, take a seat by the fire, pick up a warm mug of cocoa, and enjoy yourselves with some relaxing chat and mingle.

Anyone making New Years’ Resolutions?

Mine involve being more social in real life.

Some interesting links:

Role of Parenting in the Prediction of Criminal Involvement

c0qkuehwgaankir

“Sadists” more likely to take “courageous” action against “injustice” on the internet:

c0mjwhpxcaa-ww4

Could Neanderthals Build Boats?

But the stone tools on Naxos appeared to be hewn by Paleolithic people — much more ancient humans, perhaps not members of our species at all.

Since 2013, Carter has co-directed a new round of investigations on Naxos. He and a handful of others working in the region have begun to furnish evidence that humans reached the islands of the Aegean Sea 250,000 years ago and maybe earlier. If those dates are confirmed, it means the first people there were Neanderthals, their probable ancestors, Homo heidelbergensis or maybe even Homo erectus. …

Other researchers insist that much better evidence needs to be discovered to attribute such complex behaviours to Neanderthals and other hominins …

Then, in 1988, archeologists began excavating a collapsed rock shelter on the southern shore of Cyprus. They found about 1,000 bladelets and small tools typically associated with pre-Neolithic people.

“There was a lot of skepticism at first,” said Alan Simmons, an anthropologist at the University of Nevada Las Vegas who was involved in the work. “But once we had all the radiocarbon dates, it came to be accepted.”

The site pushed the peopling of Cyprus back to 12,000 years ago — only a few millennia, but enough to break the Neolithic barrier and establish the presence of hunter-gatherers. Today, the distance to mainland Turkey is about 75 kilometres. Sea levels have fluctuated and the crossing was once shorter, but Cyprus has always been an island.

The discoveries on Cyprus overturned the idea that hunter-gatherers were incapable or unwilling to travel by sea. But the debate was still confined to the activities of our species, Homo sapiens.

In 2008, a Greek-American team of archeologists began searching on the southwest coast of Crete for pre-Neolithic artifacts. They found many from roughly the same era as those on Cyprus. But they also found rough quartz hand axes and cleavers that appeared to be much more ancient.

The team discovered artifacts eroding out of a layer of soil that dated to at least 130,000 years ago, and the tools themselves looked like those archeologists associate with archaic hominin sites on the mainland — ones that are at least 250,000 years old. …

c0y7hezxeaa6akkFinally, a memorial fund for the wife and family of Polish truck driver Lukasz Urban, murdered in Germany 19th December 2016. Poor man, poor family.

On a related note, here’s an interesting quote about the importance of transparency to prevent government incompetence from Julian Assange of Wikileaks fame.

“Incompetence” murdered Kukasz Urban. Among many other things.

 

On to our Comments of the Week!

Unknown123 has contributed a couple of good comments to our discussion of race and crime:

“only about one-quarter of one percent (0.25 percent) of all whites will be violently victimized by a black person this year”

This would mean that its 2,5% every 10 years. A typical american white lives 80 years this would mean their lifelong chance of getting attacked by a black is 20%(!!!) exactly the same number they argue the chance of a women is to be raped in life. The same Tim Wise made a big deal of how high that is. Of course he takes anual number for other crime and lifelong numbers for rape.

And Race Realist contributed a fine post on correlations between weight and IQ:

Kanazawa (2014), reviewed the data on the research between obesity and IQ. What he found was that those studies that concluded that obesity causes lowered intelligence only observed cross-sectional studies. Longitudinal studies that looked into the link between obesity and intelligence found that those who had low IQs since childhood then became obese later in life and that obesity does not lead to low IQ. … He states that those with IQs below 74 gained 5.19 BMI points, whereas those with IQs over above 126 gained 3.73 BMI points in 22 years, which is a statistically significant difference. Also noted, was that those at age 7 who had IQs above 125 had a 13.5 percent chance of being obese at age 51, whereas those with IQs below 74 at age 7 had a 31.9 percent chance of being obese.

Thanks everyone, and keep up the good work/great comments!