Are “Nerds” Just a Hollywood Stereotype?

Yes, MIT has a football team.

The other day on Twitter, Nick B. Steves challenged me to find data supporting or refuting his assertion that Nerds vs. Jocks is a false stereotype, invented around 1975. Of course, we HBDers have a saying–“all stereotypes are true,” even the ones about us–but let’s investigate Nick’s claim and see where it leads us.

(NOTE: If you have relevant data, I’d love to see it.)

Unfortunately, terms like “nerd,” “jock,” and “chad” are not all that well defined. Certainly if we define “jock” as “athletic but not smart” and nerd as “smart but not athletic,” then these are clearly separate categories. But what if there’s a much bigger group of people who are smart and athletic?

Or what if we are defining “nerd” and “jock” too narrowly? Wikipedia defines nerd as, “a person seen as overly intellectual, obsessive, or lacking social skills.” I recall a study–which I cannot find right now–which found that nerds had, overall, lower-than-average IQs, but that study included people who were obsessive about things like comic books, not just people who majored in STEM. Similarly, should we define “jock” only as people who are good at sports, or do passionate sports fans count?

For the sake of this post, I will define “nerd” as “people with high math/science abilities” and “jock” as “people with high athletic abilities,” leaving the matter of social skills undefined. (People who merely like video games or watch sports, therefore, do not count.)

Nick is correct on one count: according to Wikipedia, although the word “nerd” has been around since 1951, it was popularized during the 70s by the sitcom Happy Days. However, Wikipedia also notes that:

An alternate spelling,[10] as nurd or gnurd, also began to appear in the mid-1960s or early 1970s.[11] Author Philip K. Dick claimed to have coined the nurd spelling in 1973, but its first recorded use appeared in a 1965 student publication at Rensselaer Polytechnic Institute.[12][13] Oral tradition there holds that the word is derived from knurd (drunk spelled backward), which was used to describe people who studied rather than partied. The term gnurd (spelled with the “g”) was in use at the Massachusetts Institute of Technology by 1965.[14] The term nurd was also in use at the Massachusetts Institute of Technology as early as 1971 but was used in the context for the proper name of a fictional character in a satirical “news” article.[15]

suggesting that the word was already common among nerds themselves before it was picked up by TV.

But we can trace the nerd-jock dichotomy back before the terms were coined: back in 1921, Lewis Terman, a researcher at Stanford University, began a long-term study of exceptionally high-IQ children, the Genetic Studies of Genius aka the Terman Study of the Gifted:

Terman’s goal was to disprove the then-current belief that gifted children were sickly, socially inept, and not well-rounded.

This belief was especially popular in a little nation known as Germany, where it inspired people to take schoolchildren on long hikes in the woods to keep them fit and the mass-extermination of Jews, who were believed to be muddying the German genepool with their weak, sickly, high-IQ genes (and nefariously trying to marry strong, healthy German in order to replenish their own defective stock.) It didn’t help that German Jews were both high-IQ and beset by a number of illnesses (probably related to high rates of consanguinity,) but then again, the Gypsies are beset by even more debilitating illnesses, but no one blames this on all of the fresh air and exercise afforded by their highly mobile lifestyles.

(Just to be thorough, though, the Nazis also exterminated the Gypsies and Hans Asperger’s subjects, despite Asperger’s insistence that they were very clever children who could probably be of great use to the German war effort via code breaking and the like.)

The results of Terman’s study are strongly in Nick’s favor. According to Psychology Today’s  account:

His final group of “Termites” averaged a whopping IQ of 151. Following-up his group 35-years later, his gifted group at mid-life definitely seemed to conform to his expectations. They were taller, healthier, physically better developed, and socially adept (dispelling the myth at the time of high-IQ awkward nerds).

According to Wikipedia:

…the first volume of the study reported data on the children’s family,[17] educational progress,[18] special abilities,[19] interests,[20] play,[21] and personality.[22] He also examined the children’s racial and ethnic heritage.[23] Terman was a proponent of eugenics, although not as radical as many of his contemporary social Darwinists, and believed that intelligence testing could be used as a positive tool to shape society.[3]

Based on data collected in 1921–22, Terman concluded that gifted children suffered no more health problems than normal for their age, save a little more myopia than average. He also found that the children were usually social, were well-adjusted, did better in school, and were even taller than average.[24] A follow-up performed in 1923–1924 found that the children had maintained their high IQs and were still above average overall as a group.

Of course, we can go back even further than Terman–in the early 1800s, allergies like hay fever were associated with the nobility, who of course did not do much vigorous work in the fields.

My impression, based on studies I’ve seen previously, is that athleticism and IQ are positively correlated. That is, smarter people tend to be more athletic, and more athletic people tend to be smarter. There’s a very obvious reason for this: our brains are part of our bodies, people with healthier bodies therefore also have healthier brains, and healthier brains tend to work better.

At the very bottom of the IQ distribution, mentally retarded people tend to also be clumsy, flacid, or lacking good muscle tone. The same genes (or environmental conditions) that make children have terrible health/developmental problems often also affect their brain growth, and conditions that affect their brains also affect their bodies. As we progress from low to average to above-average IQ, we encounter increasingly healthy people.

In most smart people, high-IQ doesn’t seem to be a random fluke, a genetic error, nor fitness reducing: in a genetic study of children with exceptionally high IQs, researchers failed to find many genes that specifically endowed the children with genius, but found instead a fortuitous absence of deleterious genes that knock a few points off the rest of us. The same genes that have a negative effect on the nerves and proteins in your brain probably also have a deleterious effect on the nerves and proteins throughout the rest of your body.

And indeed, there are many studies which show a correlation between intelligence and strength (eg, Longitudinal and Cross-Sectional Assessments of Age Changes in Physical Strength as Related to Sex, Social Class, and Mental Ability) or intelligence and overall health/not dying (eg, Intelligence in young adulthood and cause-specific mortality in the Danish Conscription Database (pdf) and The effects of occupation-based social position on mortality in a large American cohort.)

On the other hand, the evolutionary standard for “fitness” isn’t strength or longevity, but reproduction, and on this scale the high-IQ don’t seem to do as well:

Smart teens don’t have sex (or kiss much either): (h/t Gene Expresion)

Controlling for age, physical maturity, and mother’s education, a significant curvilinear relationship between intelligence and coital status was demonstrated; adolescents at the upper and lower ends of the intelligence distribution were less likely to have sex. Higher intelligence was also associated with postponement of the initiation of the full range of partnered sexual activities. … Higher intelligence operates as a protective factor against early sexual activity during adolescence, and lower intelligence, to a point, is a risk factor.

Source

Here we see the issue plainly: males at 120 and 130 IQ are less likely to get laid than clinically retarded men in 70s and 60s. The right side of the graph are “nerds”, the left side, “jocks.” Of course, the high-IQ females are even less likely to get laid than the high-IQ males, but males tend to judge themselves against other men, not women, when it comes to dating success. Since the low-IQ females are much less likely to get laid than the low-IQ males, this implies that most of these “popular” guys are dating girls who are smarter than themselves–a fact not lost on the nerds, who would also like to date those girls.

 In 2001, the MIT/Wellesley magazine Counterpart (Wellesley is MIT’s “sister school” and the two campuses allow cross-enrollment in each other’s courses) published a sex survey that provides a more detailed picture of nerd virginity:

I’m guessing that computer scientists invented polyamory, and neuroscientists are the chads of STEM. The results are otherwise pretty predictable.

Unfortunately, Counterpoint appears to be defunct due to lack of funding/interest and I can no longer find the original survey, but here is Jason Malloy’s summary from Gene Expression:

By the age of 19, 80% of US males and 75% of women have lost their virginity, and 87% of college students have had sex. But this number appears to be much lower at elite (i.e. more intelligent) colleges. According to the article, only 56% of Princeton undergraduates have had intercourse. At Harvard 59% of the undergraduates are non-virgins, and at MIT, only a slight majority, 51%, have had intercourse. Further, only 65% of MIT graduate students have had sex.

The student surveys at MIT and Wellesley also compared virginity by academic major. The chart for Wellesley displayed below shows that 0% of studio art majors were virgins, but 72% of biology majors were virgins, and 83% of biochem and math majors were virgins! Similarly, at MIT 20% of ‘humanities’ majors were virgins, but 73% of biology majors. (Apparently those most likely to read Darwin are also the least Darwinian!)

College Confidential has one paragraph from the study:

How Rolling Stone-ish are the few lucky souls who are doing the horizontal mambo? Well, not very. Considering all the non-virgins on campus, 41% of Wellesley and 32% of MIT students have only had one partner (figure 5). It seems that many Wellesley and MIT students are comfortingly monogamous. Only 9% of those who have gotten it on at MIT have been with more than 10 people and the number is 7% at Wellesley.

Someone needs to find the original study and PUT IT BACK ON THE INTERNET.

But this lack of early sexual success seems to translate into long-term marital happiness, once nerds find “the one.”Lex Fridman’s Divorce Rates by Profession offers a thorough list. The average divorce rate was 16.35%, with a high of 43% (Dancers) and a low of 0% (“Media and communication equipment workers.”)

I’m not sure exactly what all of these jobs are nor exactly which ones should count as STEM (veterinarian? anthropologists?) nor do I know how many people are employed in each field, but I count 49 STEM professions that have lower than average divorce rates (including computer scientists, economists, mathematical science, statisticians, engineers, biologists, chemists, aerospace engineers, astronomers and physicists, physicians, and nuclear engineers,) and only 23 with higher than average divorce rates (including electricians, water treatment plant operators, radio and telecommunication installers, broadcast engineers, and similar professions.) The purer sciences obviously had lower rates than the more practical applied tech fields.

The big outliers were mathematicians (19.15%), psychologists (19.26%), and sociologists (23.53%), though I’m not sure they count (if so, there were only 22 professions with higher than average divorce rates.)

I’m not sure which professions count as “jock” or “chad,” but athletes had lower than average rates of divorce (14.05%) as did firefighters, soldiers, and farmers. Financial examiners, hunters, and dancers, (presumably an athletic female occupation) however, had very high rates of divorce.

Medical Daily has an article on Who is Most Likely to Cheat? The Top 9 Jobs Unfaithful People Have (according to survey):

According to the survey recently taken by the “infidelity dating website,” Victoria Milan, individuals working in the finance field, such as brokers, bankers, and analysts, are more likely to cheat than those in any other profession. However, following those in finance comes those in the aviation field, healthcare, business, and sports.

With the exception of healthcare and maybe aviation, these are pretty typical Chad occupations, not STEM.

The Mirror has a similar list of jobs where people are most and least likely to be married. Most likely: Dentist, Chief Executive, Sales Engineer, Physician, Podiatrist, Optometrist, Farm product buyer, Precision grinder, Religious worker, Tool and die maker.

Least likely: Paper-hanger, Drilling machine operator, Knitter textile operator, Forge operator, Mail handler, Science technician, Practical nurse, Social welfare clerk, Winding machine operative, Postal clerk.

I struggled to find data on male fertility by profession/education/IQ, but there’s plenty on female fertility, eg the deceptively titled High-Fliers have more Babies:

…American women without any form of high-school diploma have a fertility rate of 2.24 children. Among women with a high-school diploma the fertility rate falls to 2.09 and for women with some form of college education it drops to 1.78.

However, among women with college degrees, the economists found the fertility rate rises to 1.88 and among women with advanced degrees to 1.96. In 1980 women who had studied for 16 years or more had a fertility rate of just 1.2.

As the economists prosaically explain: “The relationship between fertility and women’s education in the US has recently become U-shaped.”

Here is another article about the difference in fertility rates between high and low-IQ women.

But female fertility and male fertility may not be the same–I recall data elsewhere indicating that high-IQ men have more children than low IQ men, which implies those men are having their children with low-IQ women. (For example, while Bill and Hillary seem about matched on IQ, and have only one child, Melania Trump does not seem as intelligent as Trump, who has five children.)

Amusingly, I did find data on fertility rate by father’s profession for 1920, in the Birth Statistics for the Birth Registration Area of the US:

Of the 1,508,874 children born in 1920 in the birth registration area of the United states, occupations of fathers are stated for … 96.9%… The average number of children ever born to the present wives of these occupied fathers is 3.3 and the average number of children living 2.9.

The average number of children ever born ranges from 4.6 for foremen, overseers, and inspectors engaged in the extraction of minerals to 1.8 for soldiers, sailors, and marines. Both of these extreme averages are easily explained, for soldier, sailors and marines are usually young, while such foremen, overseers, and inspectors are usually in middle life. For many occupations, however, the ages of the fathers are presumably about the same and differences shown indicate real differences in the size of families. For example, the low figure for dentists, (2), architects, (2.1), and artists, sculptors, and teachers of art (2.2) are in striking contrast with the figure for mine operatives (4.3), quarry operatives (4.1) bootblacks, and brick and stone masons (each 3.9). …

As a rule the occupations credited with the highest number of children born are also credited with the highest number of children living, the highest number of children living appearing for foremen, overseers, and inspectors engaged in the extraction of minerals (3.9) and for steam and street railroad foremen and overseer (3.8), while if we exclude groups plainly affected by the age of fathers, the highest number of children living appear for mine and quarry operatives (each 3.6).

Obviously the job market was very different in 1920–no one was majoring in computer science. Perhaps some of those folks who became mine and quarry operatives back then would become engineers today–or perhaps not. Here are the average numbers of surviving children for the most obviously STEM professions (remember average for 1920 was 2.9):

Electricians 2.1, Electrotypers 2.2, telegraph operator 2.2, actors 1.9, chemists 1.8, Inventors 1.8, photographers and physicians 2.1, technical engineers 1.9, veterinarians 2.2.

I don’t know what paper hangers do, but the Mirror said they were among the least likely to be married, and in 1920, they had an average of 3.1 children–above average.

What about athletes? How smart are they?

Athletes Show Huge Gaps on SAT Scores” is not a promising title for the “nerds are athletic” crew.

The Journal-Constitution studied 54 public universities, “including the members of the six major Bowl Championship Series conferences and other schools whose teams finished the 2007-08 season ranked among the football or men’s basketball top 25.”…

  • Football players average 220 points lower on the SAT than their classmates. Men’s basketball was 227 points lower.
  • University of Florida won the prize for biggest gap between football players and the student body, with players scoring 346 points lower than their peers.
  • Georgia Tech had the nation’s best average SAT score for football players, 1028 of a possible 1600, and best average high school GPA, 3.39 of a possible 4.0. But because its student body is apparently very smart, Tech’s football players still scored 315 SAT points lower than their classmates.
  • UCLA, which has won more NCAA championships in all sports than any other school, had the biggest gap between the average SAT scores of athletes in all sports and its overall student body, at 247 points.

From the original article, which no longer seems to be up on the Journal-Constitution website:

All 53 schools for which football SAT scores were available had at least an 88-point gap between team members’ average score and the average for the student body. …

Football players performed 115 points worse on the SAT than male athletes in other sports.

The differences between athletes’ and non-athletes’ SAT scores were less than half as big for women (73 points) as for men (170).

Many schools routinely used a special admissions process to admit athletes who did not meet the normal entrance requirements. … At Georgia, for instance, 73.5 percent of athletes were special admits compared with 6.6 percent of the student body as a whole.

On the other hand, as Discover Magazine discusses in “The Brain: Why Athletes are Geniuses,” athletic tasks–like catching a fly ball or slapping a hockey puck–require exceptionally fast and accurate brain signals to trigger the correct muscle movements.

Ryan Stegal studied the GPAs of highschool student athletes vs. non-athletes and found that the athletes had higher average GPAs than the non-athletes, but he also notes that the athletes were required to meet certain minimum GPA requirements in order to play.

But within athletics, it looks like the smarter athletes perform better than dumber ones, which is why the NFL uses the Wonderlic Intelligence Test:

NFL draft picks have taken the Wonderlic test for years because team owners need to know if their million dollar player has the cognitive skills to be a star on the field.

What does the NFL know about hiring that most companies don’t? They know that regardless of the position, proof of intelligence plays a profound role in the success of every individual on the team. It’s not enough to have physical ability. The coaches understand that players have to be smart and think quickly to succeed on the field, and the closer they are to the ball the smarter they need to be. That’s why, every potential draft pick takes the Wonderlic Personnel Test at the combine to prove he does–or doesn’t—have the brains to win the game. …

The first use of the WPT in the NFL was by Tom Landry of the Dallas Cowboys in the early 70s, who took a scientific approach to finding players. He believed players who could use their minds where it counted had a strategic advantage over the other teams. He was right, and the test has been used at the combine ever since.

For the NFL, years of testing shows that the higher a player scores on the Wonderlic, the more likely he is to be in the starting lineup—for any position. “There is no other reasonable explanation for the difference in test scores between starting players and those that sit on the bench,” Callans says. “Intelligence plays a role in how well they play the game.”

Let’s look at Exercising Intelligence: How Research Shows a Link Between Physical Activity and Smarts:

A large study conducted at the Sahlgrenska Academy and Sahlgrenska University Hospital in Gothenburg, Sweden, reveals that young adults who regularly exercise have higher IQ scores and are more likely to go on to university.

The study was published in the Proceedings of the National Academy of Sciences (PNAS), and involved more than 1.2 million Swedish men. The men were performing military service and were born between the years 1950 and 1976. Both their physical and IQ test scores were reviewed by the research team. …

The researchers also looked at data for twins and determined that primarily environmental factors are responsible for the association between IQ and fitness, and not genetic makeup. “We have also shown that those youngsters who improve their physical fitness between the ages of 15 and 18 increase their cognitive performance.”…

I have seen similar studies before, some involving mice and some, IIRC, the elderly. It appears that exercise is probably good for you.

I have a few more studies I’d like to mention quickly before moving on to discussion.

Here’s Grip Strength and Physical Demand of Previous Occupation in a Well-Functioning Cohort of Chinese Older Adults (h/t prius_1995) found that participants who had previously worked in construction had greater grip strength than former office workers.

Age and Gender-Specific Normative Data of Grip and Pinch Strength in a Healthy Adult Swiss Population (h/t prius_1995).

 

If the nerds are in the sedentary cohort, then they be just as athletic if not more athletic than all of the other cohorts except the heavy work.

However, in Revised normative values for grip strength with the Jamar dynamometer, the authors found no effect of profession on grip strength.

And Isometric muscle strength and anthropometric characteristics of a Chinese sample (h/t prius_1995).

And Pumpkin Person has an interesting post about brain size vs. body size.

 

Discussion: Are nerds real?

Overall, it looks like smarter people are more athletic, more athletic people are smarter, smarter athletes are better athletes, and exercise may make you smarter. For most people, the nerd/jock dichotomy is wrong.

However, there is very little overlap at the very highest end of the athletic and intelligence curves–most college (and thus professional) athletes are less intelligent than the average college student, and most college students are less athletic than the average college (and professional) athlete.

Additionally, while people with STEM degrees make excellent spouses (except for mathematicians, apparently,) their reproductive success is below average: they have sex later than their peers and, as far as the data I’ve been able to find shows, have fewer children.

Stephen Hawking

Even if there is a large overlap between smart people and athletes, they are still separate categories selecting for different things: a cripple can still be a genius, but can’t play football; a dumb person can play sports, but not do well at math. Stephen Hawking can barely move, but he’s still one of the smartest people in the world. So the set of all smart people will always include more “stereotypical nerds” than the set of all athletes, and the set of all athletes will always include more “stereotypical jocks” than the set of all smart people.

In my experience, nerds aren’t socially awkward (aside from their shyness around women.) The myth that they are stems from the fact that they have different interests and communicate in a different way than non-nerds. Let nerds talk to other nerds, and they are perfectly normal, communicative, socially functional people. Put them in a room full of non-nerds, and suddenly the nerds are “awkward.”

Unfortunately, the vast majority of people are not nerds, so many nerds have to spend the majority of their time in the company of lots of people who are very different than themselves. By contrast, very few people of normal IQ and interests ever have to spend time surrounded by the very small population of nerds. If you did put them in a room full of nerds, however, you’d find that suddenly they don’t fit in. The perception that nerds are socially awkward is therefore just normie bias.

Why did the nerd/jock dichotomy become so popular in the 70s? Probably in part because science and technology were really taking off as fields normal people could aspire to major in, man had just landed on the moon and the Intel 4004 was released in 1971.  Very few people went to college or were employed in sciences back in 1920; by 1970, colleges were everywhere and science was booming.

And at the same time, colleges and highschools were ramping up their athletics programs. I’d wager that the average school in the 1800s had neither PE nor athletics of any sort. To find those, you’d probably have to attend private academies like Andover or Exeter. By the 70s, though, schools were taking their athletics programs–even athletic recruitment–seriously.

How strong you felt the dichotomy probably depends on the nature of your school. I have attended schools where all of the students were fairly smart and there was no anti-nerd sentiment, and I have attended schools where my classmates were fiercely anti-nerd and made sure I knew it.

But the dichotomy predates the terminology. Take Superman, first 1938. His disguise is a pair of glasses, because no one can believe that the bookish, mild-mannered, Clark Kent is actually the super-strong Superman. Batman is based on the character of El Zorro, created in 1919. Zorro is an effete, weak, foppish nobleman by day and a dashing, sword-fighting hero of the poor by night. Of course these characters are both smart and athletic, but their disguises only work because others do not expect them to be. As fantasies, the characters are powerful because they provide a vehicle for our own desires: for our everyday normal failings to be just a cover for how secretly amazing we are.

But for the most part, most smart people are perfectly fit, healthy, and coordinated–even the ones who like math.

 

Advertisements

Homeschooling Corner: Flying Kites

We had a lovely, windy day, so we grabbed the kites, invited the neighbors, and headed out to the park.

Homeschooling does put additional responsibility on the parents to help their kids socialize. That doesn’t mean homeschooled kids are necessarily at a disadvantage viz their typically-schooled peers when it comes to comes to socializing (I went to regular school and still managed to be terribly socialized;) it’s just one more thing homeschooling parents have to keep in mind. So I am glad that we’ve had the good luck recently to make several friends in the neighborhood.

I’ve been looking for good, educational YouTube channels. Now I haven’t watched every video on these channels and I make no guarantees, but they seem good so far:

Welch Labs:

Welch Labs also has a website with a free downloadable workbook that accompanies their videos about imaginary numbers. It’s a good workbook and I’m working through it now.

TedEd, eg:

VSauce, eg:

Numberphile, eg:

The King of Random, eg:

We finished DK’s Coding in Scratch Projects Workbook and started Coding in Scratch: Games Workbook, which is slightly more advanced (longer projects.)

The Usborne Times Tables Activity Book is a rare find: a book that actually makes multiplication vaguely fun. Luckily there’s no one, set age when kids need to learn their multiplication tables–so multiple kids can practice their tables together.

In math we’ve also been working with number lines, concept like infinity (countable and uncountable,) infinitesimals, division, square roots, imaginary numbers, multi-digit addition and subtraction, graphing points and lines on the coordinate plane, and simple functions like Y=X^2. (Any kid who has learned addition, subtraction, multiplication and division can plot simple functions.)

We started work with the cuisenaire rods, which I hope to continue–I can’t find our set on Amazon, but these are similar. We’re also using Alexander Warren’s book You can Count on it: A Mentor’s Arithmetic Patterns for Elementary Students for cusienaire activites.

If you’re looking for board game to play with elementary-aged kids, Bejeweled Blitz is actually pretty good. Two players compete to place tiles on the board to match 3 (or more) gems, in a row or up and down. (A clever play can thus complete two rows at once.) We play with slightly modified rules. (Note: this game is actually pretty hard for people who struggle with rotating objects in their heads.)

Picture Sudoku is fun for little kids (and probably comes in whatever cartoon characters you like,) while KenKen and magic squares and the like are good for older kids (I always loved logic puzzles when I was a kid, so I’d like to get a book of those.)

I’ve found a website called Memrise which seems good for learning foreign languages if you don’t have access to a tutor or know somene who speaks the language you want to learn. They probably have an app for phones or tablets, so kids could practice their foreign langauge on-the-go. (Likewise, I should stow our spelling book in the car and use car rides as a chance to quiz them.)

And of course we’re still reading Professor Astro Cat/working in the workbook, which involves plenty of writing.

For Social Studies we’ve been reading about fall holidays.

Hope you all have a lovely October! What are some of your favorite educational videos?

 

Homeschooling Corner: The Things we Played

I’m a really boring person who gets excited about finding math workbooks at the secondhand shop. I got lucky this week and snagged two math and 1 science workbooks, plus Bedtime Math 2 at the library. Since new workbooks/manipulatives/materials can be pricey,* I’ve been keeping an eye out for good deals for, well, pretty much my kids’ whole lives. For example, a few years ago I found Hooked on Math ($45 on Amazon) at Goodwill for a couple of bucks; I found some alphabet flashcards at a garage sale for 50c.

I’m also lucky to have several retired teachers in the family, so I’ve “inherited” a nice pile of teaching materials, from tangrams to fractions.

*That said, sometimes you need a particular workbook now, not whenever one shows up at the second hand shop, so thankfully plenty of workbooks are actually pretty cheap.

But full “curriculums” can be pretty expensive–for example, Saxon Math plus manipulatives runs about $200; a Lifepack 4 or 5-subject curriculum is about $320; Montessori math kit: $250; Horizons: $250. I have no idea if these are worth the money or not.

So I’m glad I already have most of what I need (for now.)

This week we started typing (I went with the first website that came up when I searched for “typing tutor” and so far it’s gone well.) We finished Bedtime Math and moved on to Bedtime Math 2. (We’re also working out of some regular old math books, as mentioned above.)

In science we’re still reading Professor Astro Cat’s Frontiers of Space (today we discussed eclipses,) and we started Professor Astro Cat’s Intergalactic Workbook, which has been fun so far. It has activities based on space gloves, weightlessness, Russian phrases (used on the International Space Station,) Morse Code, etc.

(The gloves activity was difficult for youngest child–in retrospect, one pair of glove would have been sufficient. Eventually they got frustrated and started using their feet instead of hands to complete the activities.)

Professor Astro Cat has therefore been the core of our activities this week.

To keep things light, I’ve interspersed some games like Trucky3, Perplexus, and Fraction Formula. They’re also useful when one kid has finished an activity and another hasn’t and I have to keep them occupied for a while.

Coding continues apace: learned about loops this week.

Spelling is one of our weak points, so I want to do at least some spelling each day, (today we spelled planets’ names) but I’m not sure what the best approach is. English spelling is pretty weird.

Homeschooling Corner

Welcome! Highly unscientific polling has revealed an interest in a regular or semi-regular feature focused on homeschooling.

Note that I am NOT some homeschooling guru with years of experience. We are just beginning, so I want some other people to discuss things with. I don’t have a curriculum picked out nor a coherent “philosophy,” but I am SO EXCITED about all of the things I have to teach I couldn’t even list them all.

I was thinking of starting with just a focus on what has been successful this week–which books/websites/projects we liked–and perhaps what was unsuccessful. I invite all of you to come and share your thoughts, ideas, questions, philosophies, recommendations, etc. Parents whose kids are attending regular schools but want to talk about learning materials are also welcome.

One request: Please no knee-jerk bashing of public schools or teachers. (I just find this really annoying.) Thoughtful, well-reasoned critique of mainstream schooling are fine, but let’s try to focus on the homeschooling.

This week’s successes:

DK Workbooks: Coding with Scratch (workbook) has been an amazing success.

Like many parents, I thought it’d be useful to learn some basic coding, but have no idea where to start. I once read HTML for dummies, but I don’t know my CSS from Perl, much less what’s best for kids.

After a bit of searching, I decided to try the the DK Coding with Scratch series. (This particular workbook is aimed at kids 6-9 yrs old, but there are others in the series.)

Scratch is a free, simple, child-friendly coding program available online at https://scratch.mit.edu/. You don’t need the workbook to use Scratch, (it’s just a helpful supplement.) There are also lots of helpful Youtube videos for the enterprising young coder.

Note: my kids really want to code because they want to make their own video games.

In general, I have found that toys and games that claim they will teach your kids to code actually won’t. (Eg, Robot Turtles.) Some of these games are a ton of fun anyway, I just wouldn’t expect to become a great coder that way.

Professor Astro Cat’s Frontiers of Space is as good as it looks. Target market is 8-11 years old. There’s a lot of information per page, so we’re reading and discussing a few pages each day.

There are two other books in the series, Professor Astro Cat’s Intergalactic Activity Book, which I’m hoping will make a good companion to this one, and Astro Cat’s Atomic Adventure, which looks like it fills the desperately needed “quantum physics for kids” niche.)

I’m still trying to figure out how to do hands-on science activities without spending a bundle. Most of the “little labs” type science kits look fun, but don’t pack a lot of educational bang for your buck. For example, today we built a compass (it cost $10 at the toy store, not the $205 someone is trying charge on Amazon.) This was fun and I really like the little model, but it also took about 5 minutes to snap the pieces together and we can’t actually carry it around to use it like a real compass.

Plus, most of these labs are basically single-use items. I like toys with a sciency-theme, but they’re too expensive to run the whole science curriculum off of.

Oh, sure, I hand them a page of math problems and they start squawking at me like chickens. But bedtime rolls around and they’re like, “Where’s our Bedtime Math? Can’t we do one more page? One more problem? Please?”

There are only three math problems every other page (though this does add up to over 100 problems,) the presentation is fun, and the kids like the book better than going to sleep.

The book offers easy, medium, and hard problems in each section, so it works for kids between the ages of about 4 and 10.

There’s an inherent tension in education between emphasizing subjects that kids are already good at and working on the ones they’re bad at. The former gives kids a chance to excel, build confidence, and of course actually get good at something, while the latter is often an annoying pain in the butt but nevertheless necessary.

 

Since we’ve just started and are still getting in the swing of things, I’m trying to focus primarily on the things they’re good at and enjoy and have just a little daily focus on the things they’re weak at.

I’d like to find a good typing tutor (I’ll probably be trying several out soon) because watching the kids hunt-and-peck at the keyboard makes my hair stand on end. I’d also like to find a good way to hold up workbooks next to the computer to make using the DK books easier.

That’s about it, so I’ll open the floor to you guys.

No, Graecopithecus does not prove humans evolved in Europe

Hello! We’re in the midst of a series of posts on recent exciting news in the field of human evolution:

  • Ancient hominins in the US?
  • Homo naledi
  • Homo flores
  • Humans evolved in Europe?
  • In two days, first H Sap was pushed back to 260,000 years,
  • then to 300,000 years!
  • Bell beaker paper

Today we’re discussing the much-publicized claim that scientists have discovered that humans evolved in Europe. (If you haven’t read last week’s post on Homo naledi and flores, I encourage you to do so first.) The way reporters have framed their headlines about the recent Graecopithecus freybergi findings is itself a tale:

The Telegraph proclaimed, “Europe was the birthplace of mankind, not Africa, scientists find,” Newsweek similarly trumpeted, “First Human Ancestor Came from Europe Not Africa,” and CBS News stated, “Controversial study suggests earliest humans lived in Europe – not Africa.”

The Conversation more prudently inquired, “Did humans evolve in Europe rather than Africa? ” and NewScientist and the Washington Post, in a burst of knowing what a “human” is, stated, “Our common ancestor with chimps may be from Europe, not Africa” and “Ape that lived in Europe 7 million years ago could be human ancestor,” respectively.

This all occasioned some very annoying conversations along the lines of “White skin tone couldn’t possibly have evolved within the past 20,000 years because humans evolved in Europe! Don’t you know anything about science?”

Ohkay. Let’s step back a moment and take a look at what Graecopithecus is and what it isn’t.

This is Graecopithecus:

I think there is a second jawbone, but that’s basically it–and that’s not six teeth, that’s three teeth, shown from two different perspectives. There’s no skull, no shoulder blades, no pelvis, no legs.

Lucy
Naledi

By contrast, here are Lucy, the famous Australopithecus from Ethiopia, and a sample of the over 1,500 bones and pieces of Homo naledi recently recovered from a cave in South Africa.

Now, given what little scientists had to work with, the fact that they managed to figure out anything about Graecopithecus is quite impressive. The study, reasonably titled “Potential hominin affinities of Graecopithecus from the Late Miocene of Europe,” by
Jochen Fuss, Nikolai Spassov, David R. Begun, and Madelaine Böhm, used μCT and 3D reconstructions of the jawbones and teeth to compare Graecopithecus’s teeth to those of other apes. They decided the teeth were different enough to distinguish Graecopithecus from the nearby but older Ouranopithecus, while looking more like hominin teeth:

G. freybergi uniquely shares p4 partial root fusion and a possible canine root reduction with this tribe and therefore, provides intriguing evidence of what could be the oldest known hominin.

My hat’s off to the authors, but not to all of the reporters who dressed up “teeth look kind of like hominin teeth” as “Humans evolved in Europe!”

First of all, you cannot make that kind of jump based off of two jawbones and a handfull of teeth. Many of the hominin species we have recovered–such as Homo naledi and Homo floresiensis, as you know if you already read the previous post–possessed a mosaic of “ape like” and “human like” traits, ie:

The physical characteristics of H. naledi are described as having traits similar to the genus Australopithecus, mixed with traits more characteristic of the genus Homo, and traits not known in other hominin species. The skeletal anatomy displays plesiomorphic (“ancestral”) features found in the australopithecines and more apomorphic (“derived,” or traits arising separately from the ancestral state) features known from later hominins.[2]

Nebraska Man teeth compared to chimps, Homo erectus, and modern humans

If we only had six Homo naledi bones instead of 1,500 of them, we might be looking only at the part that looks like an Australopithecus instead of the parts that look like H. erectus or totally novel. You simply cannot make that kind of claim off a couple of jawbones. You’re far too likely to be wrong, and then not only will you end up with egg on your face, but you’ll only be giving more fuel to folks who like to proclaim that “Nebraska Man turned out to be a pig!”:

In February 1922, Harold Cook wrote to Dr. Henry Osborn to inform him of the tooth that he had had in his possession for some time. The tooth had been found years prior in the Upper Snake Creek beds of Nebraska along with other fossils typical of North America. … Osborn, along with Dr. William D. Matthew soon came to the conclusion that the tooth had belonged to an anthropoid ape. They then passed the tooth along to William K. Gregory and Dr. Milo Hellman who agreed that the tooth belonged to an anthropoid ape more closely related to humans than to other apes. Only a few months later, an article was published in Science announcing the discovery of a manlike ape in North America.[1] An illustration of H. haroldcookii was done by artist Amédée Forestier, who modeled the drawing on the proportions of “Pithecanthropus” (now Homo erectus), the “Java ape-man,” for the Illustrated London News. …

Examinations of the specimen continued, and the original describers continued to draw comparisons between Hesperopithecus and apes. Further field work on the site in the summers of 1925 and 1926 uncovered other parts of the skeleton. These discoveries revealed that the tooth was incorrectly identified. According to these discovered pieces, the tooth belonged neither to a man nor an ape, but to a fossil of an extinct species of peccary called Prosthennops serus.

That basically sums up everything I learned about human evolution in highschool.

Second, “HUMANS” DID NOT EVOLVE 7 MILLION YEARS AGO.

Scientists define “humans” as members of the genus Homo, which emerged around 3 million years ago. These are the guys with funny names like Homo habilis, Homo neanderthalensis, and the embarrassingly named Homo erectus. The genus also includes ourselves, Homo sapiens, who emerged around 200-300,000 years ago.

Homo habilis descended from an Australopithecus, perhaps Lucy herself. Australopithecines are not in the Homo genus; they are not “human,” though they are more like us than modern chimps and bonobos are. They evolved around 4 million years ago.

The Australopithecines evolved, in turn, from even older apes, such as–maybe–Ardipithecus (4-6 million years ago) or Sahelanthropus tchadensis.

Regardless, humans didn’t evolve 7 million years ago. Sahelanthropus and even Lucy do not look like anyone you would call “human.” Humans have only been around for about 3 million years, and our own specific species is only about 300,000 years old. Even if Graecopithecus turns out to be the missing link–the true ancestor of both modern chimps and modern humans–that still does not change where humans evolved, because Graecopithecus narrowly missed being a human by 4 million years.

If you want to challenge the Out of Africa narrative, I think you’d do far better arguing for a multi-regional model of human evolution that includes back-migration of H. erectus into Africa and interbreeding with hominins there as spurring the emergence of H. sapiens than arguing about a 7 million year old jawbone. (I just made that up, by the way. It has no basis in anything I have read. But it at least has the right characters, in the right time frame, in a reasonable situation.)

Sorry this was a bit of a rant; I am just rather passionate about the subject. Next time we’ll examine very exciting news about Bushmen and Pygmy DNA!

 

Recent Exciting Developments: 130kya American Hominins?

There has been SO MUCH EXCITING NEWS out of paleoanthropology/genetics lately, it’s been a little tricky keeping up with it all. I’ve been holding off on commenting on some of the recent developments to give myself time to think them over, but here goes:

  1. Ancient hominins in the US?
  2. Homo naledi
  3. Homo flores
  4. Humans evolved in Europe?
  5. In two days, first H Sap was pushed back to 260,000 years,
  6. then to 300,000 years!
  7. Bell beaker paper

1. Back in May (2017,) Holen et al published an article discussing A 130,000-year-old archaeological site in southern California, USA, in Nature:

Here we describe the Cerutti Mastodon (CM) site, an archaeological site from the early late Pleistocene epoch, where in situ hammerstones and stone anvils occur in spatio-temporal association with fragmentary remains of a single mastodon (Mammut americanum). The CM site contains spiral-fractured bone and molar fragments, indicating that breakage occured while fresh. Several of these fragments also preserve evidence of percussion. The occurrence and distribution of bone, molar and stone refits suggest that breakage occurred at the site of burial. Five large cobbles (hammerstones and anvils) in the CM bone bed display use-wear and impact marks, and are hydraulically anomalous relative to the low-energy context of the enclosing sandy silt stratum. 230Th/U radiometric analysis of multiple bone specimens using diffusion–adsorption–decay dating models indicates a burial date of 130.7 ± 9.4 thousand years ago. These findings confirm the presence of an unidentified species of Homo at the CM site during the last interglacial period (MIS 5e; early late Pleistocene), indicating that humans with manual dexterity and the experiential knowledge to use hammerstones and anvils processed mastodon limb bones for marrow extraction and/or raw material for tool production.

Reconstruction of a Homo erectus woman, Smithsonian

Note that “Homo” here is probably not H. sapiens, but a related or ancestral species, like Denisovans or Homo erectus, because as far as we know, H. sapiens was still living in Africa at the time.

This is obviously a highly controversial claim. Heck, “earliest human presence in the Americas” was already controversial, with some folks firmly camped at 15,000 years ago and others camped around 40,000 yeas ago. 130,000 years ago wasn’t even on the table.

Unfortunately, the article is paywalled, so I can’t read the whole thing and answer simple questions like, “Did they test the thickness of mineral accumulation on the bones to see if the breaks/scratches are the same age as the bones themselves?” That is, minerals build up on the surfaces of old bones over time. If the breaks and scratches were made before the bones were buried, they’ll have the same amount of buildup as the rest of the bone surfaces. If the breaks are more recent–say, the result of a bulldozer accidentally backing over the bones–they won’t.

They did get an actual elephant skeleton and smacked it with rocks to see if it would break in the same ways as the mammoth skeleton. A truck rolling over a rib and a rock striking it at an angle are bound to produce different kinds and patterns of breakage (the truck is likely to do more crushing, the rock to leave percussive impacts.) I’d also like to know if they compared the overall butchering pattern to known stone-tool-butchered elephants or mammoths, although I don’t know how easy it would be to find one.

Oldowan tool, about 2 million years old

They also looked at the pattern of impacts and shapes of the “hammerstones.” A rock which has been modified by humans hitting it with another rock will typically have certain shapes and patterns on its surface that can tell you things like which angle the rock was struck from during crafting. I’ve found a few arrowheads, and they are pretty distinct from other rocks.

Here’s a picture of an Oldowan stone chopper, about 2 million years old, which is therefore far older than these potential 130,000 year old tools. Homo sapiens didn’t exist 2 million years ago; this pointy rock was probably wielded by species such as Australopithecus garhi, H. habilis, or H. ergaster. Note that one side of this chopper is rounded, intended for holding comfortably in your hand, while the other side has had several chunks of rock smacked off, resulting in convex surfaces. Often you can tel exactly where the stone tool was struck to remove a flake, based on the shape and angle of the surface and the pattern of concentric, circular lines radiating out from the impact spot.

Homo erectus, who lived after the Oldowan tool makers and had a fancier, more complicated lithic technology, did make it out of Africa and spread across southeast Asia, up into China. This is, as far as I know, the first case of a hominin species using tools to significantly expand its range, but we have no evidence of erectus ever expanding into places that get significantly cold in the winter, and boat-building is a pretty advanced skill. We don’t even think erectus made it to Madagascar, which makes it sailing to the Americans rather doubtful.

I dislike passing judgment on the paper without reading it, but my basic instinct is skepticism. While I think the peopling of the Americas will ultimately turn out to be a longer, more complex, and interesting process than the 15,000 years camp, 130,000 years is just too interesting a claim to believe without further evidence (like the bones of said hominins.)

Still, I keep an open mind and await new findings.

(We’ll continue with part 2 next week.)

Do Chilblains Affect Blacks More than Whites?

toes afflicted with chilblains
toes afflicted with chilblains

While tromping through a blizzard, seeking insight into circum-polar peoples, I discovered a condition called chilblains. The relevant Wikipedia page is rather short:

Chilblains … is a medical condition that occurs when a predisposed individual is exposed to cold and humidity, causing tissue damage. It is often confused with frostbite and trench foot. Damage to capillary beds in the skin causes redness, itching, inflammation, and sometimes blisters. Chilblains can be reduced by keeping the feet and hands warm in cold weather, and avoiding extreme temperature changes. Chilblains can be idiopathic (spontaneous and unrelated to another disease), but may also be a manifestation of another serious medical condition that needs to be investigated.

The part they don’t mention is that it can really hurt.

The first HBD-related question I became interested in–after visiting a black friend’s house and observing that she was comfortable without the AC on, even though it was summer–is whether people from different latitudes prefer different temperatures. It seems pretty obvious: surely people from Yakutsk prefer different temperatures than people from Pakistan. It also seems easy to test: just put people in a room and give them complete control over the thermostat. And yet, I’d never heard anyone discuss the idea.

Anyway, the perfunctory Wikipedia page on chilblains mentioned nothing about racial or ethnic predisposition to the condition–even though surely the Eskimo (Inuit) who have genetic admixture from both ice-age Neanderthals and Denisovans:

“Using this method, they found two regions with a strong signal of selection: (i) one region contains the cluster of FADS genes, involved in the metabolism of unsaturated fatty acids; (ii) the other region contains WARS2 and TBX15, located on chromosome 1.” …

“TBX15 plays a role in the differentiation of brown and brite adipocytes. Brown and brite adipocytes produce heat via lipid oxidation when stimulated by cold temperatures, making TBX15 a strong candidate gene for adaptation to life in the Arctic.” …

“The Inuit DNA sequence in this region matches very well with the Denisovan genome, and it is highly differentiated from other present-day human sequences, though we can’t discard the possibility that the variant was introduced from another archaic group whose genomes we haven’t sampled yet,” Dr. Racimo said.

The scientists found that the variant is present at low-to-intermediate frequencies throughout Eurasia, and at especially high frequencies in the Inuits and Native American populations, but almost absent in Africa.

Sub-Saharan Africans have their own archaic admixture, but they have very little to no ice-age hominin–which is probably good for them, except for those who’ve moved further north.

Imagine my surprised upon searching and discovering very little research on whether chilblains disproportionately affects people of different races or ethnicities. If you were a dermatologist–or a genetically prone person–wouldn’t you want to know?

So here’s what I did find:

The National Athletic Trainers Association Position Statement on Cold Injuries notes:

Black individuals have been shown to be 2 to 4 times more likely than individuals from other racial groups to sustain cold injuries. These differences may be due to cold weather experience, but are likely due to anthropometric and body composition differences, including less-pronounced CIVD, increased sympathetic response to cold exposure, and thinner, longer digits.3,6

I think CIVD=Cold-Induced Vasodilation

The Military Surgeon: Journal of the Association of Military Surgeons of the United States, Volumes 36-37, states:

c2ijujzucaayfvv

c2ijvyvveaaehdz c2ijw49vqaajuou

The text continues with descriptions of amputating rotting feet.

A PDF from the UK, titled “Cold Injury,” notes:

c2ilp17uaaaonao

Notice that the incidence of chilblains is actually less in extremely cold places than moderately cold places–attributed here to people in these places being well-equipped for the cold.

c2ilp4evqaet4lu

Finally I found a PDF of a study performed, I believe, by the US Military, Epidemiology of US Army Cold Weather Injuries, 1980-1999:

picture-2

While I would really prefer to have more ethnic groups included in the study, two will have to suffice. It looks like trench foot may be an equal-opportunity offender, but chilblains, frostbite, and other cold-related injuries attack black men (at least in the army) at about 4x the rate of white men, and black women 2x as often as white women (but women in the army may not endure the same conditions as men in the army.)

On a related note, while researching this post, I came across this historic reference to infectious scurvy and diabetes, in the Journal of Tropical Medicine and Hygiene, Volumes 4-5 (published in 1902):

c2iou5uviae83si

Note: this is why it is important to discard bad theories after they’ve been disproven. Otherwise, you kill your scurvy victims by quarantining them instead of giving them oranges.

Tesla vs. Edison

... and fight! 220px-Thomas_Edison2

It has become popular of late, especially on the left, to love Tesla and hate Edison. (Warning: that is a link to the Oatmeal, which is very funny and will suck up large quantities of your time if you let it, but if you aren’t familiar with the leftists hate of Edison and valorization of Tesla, it’s a necessary read.)

Edison, (1847 – 1931) was an American-born (son of a Canadian war refugee of Dutch descent) auto-didact, inventor, and businessman who was awarded over a thousand patents. His most important inventions (or inventions produced by his lab,) include the first actually useful lightbulb, the phonograph, the first movie camera and a device to view the movies on, the electrical grid necessary to power the lightbulb, the movie studio necessary to make the films for people to watch, and the scientific research lab.

He was friends with Henry Ford, a community volunteer, deaf, and a general humanitarian who abhorred violence and prided himself on having never invented an offensive weapon.

His worst mistake appears to have been not realizing what business he was in during the “War of the Currents;” Edison thought he was in the lightbulb-selling business, and since he had invented a lightbulb that ran on DC, he wanted everyone to use DC. He also seems to have been genuinely concerned about the high voltages used by AC, but DC just drops off too quickly to be used in non-urban areas; to get the country electrified required DC. Edison not only lost the Currents War, but also got kicked out of the company he’d founded by his stock holders. The company’s name was later changed to General Electric.

His political views were fairly common for his day–he advocated the populist position on abolishing the gold standard, tax reform, and making loans interest free to help farmers. Religiously, he was basically a GNON-believing deist. He preferred silent films over “talkies” due to being deaf, and had six children, three of whom went into science/inventing, one with a degree from Yale and one from MIT.

The idea that Edison was “merely” a businessman or CEO is completely bollocks. He was not only a brilliant inventor, but also understood how his inventions would be used and created the systems–both human and mechanical–necessary to bring them to full fruition.

Edison's lab in Menlo Park
Edison’s lab in Menlo Park

 

Tesla (1856-1943) was a Serb born in Croatia back when Croatia was part of the Austrian empire. By all accounts, he was exceedingly brilliant. His father was a priest and his mother was the daughter of a priest, but he received a scholarship to the Austrian Polytechnic University, where he burned like a meteor for his first year, earning the highest grades possible in 9 subjects (almost twice the required course load.) In his second year, he became addicted to gambling, then gambled away his tuition money in year three and forgot to study for his finals. He flunked out and ran away.

A couple of years later, his family raised money to send him to university again, which was another fiasco, since Tesla didn’t have training in two of the required subjects and so couldn’t actually attend.

Nevertheless, Tesla managed to get work at a telegraph company and was eventually invited to the US to work under Edison. Here he did excellent work, but quit over a rather stupid sounding misunderstanding about pay, wherein Tesla expected to be paid far more for an invention than Edison had in funds to pay anyone. Edison offered a raise instead, but Tesla decided to strike out on his own.

Tesla attempted to start a business, which ended badly (it sounds like it went south because he wasn’t focusing on the stated goals of the company,) and left him a penniless ditch-digger.

He then hit on a series of successes, including the polyphase induction motor, which ended with him quite handsomely employed by one of Edison’s competitors, Westinghouse, but even here he had difficulties getting along with his co-workers. Eventually it seems he established his own lab and convinced investors to give him $100,000, which he promptly spent on more lab equipment instead of the new lighting system he’d promised. His lab was later sold and torn down to pay off debts.

Tesla received yet another major investment, $150,000 to build a wireless telegraph facility, but appears to have blown the money on stock market speculation. He did manage to finish the project, though without any more funds from his now very jaded investors, but eventually he had to sell the building, and it was demolished.

Many of Tesla’s inventions were clearly brilliant and far ahead of their time. Others are delusions, like his mechanical oscillator. Tesla claimed it nearly brought down the building; Mythbusters built one themselves, and it did no such thing.

There is a kind of brilliance that slides easily into madness, and Tesla’s was clearly of this sort. He was too adept at pattern matching (he could do calculus in his head) to sort out real patterns from ones he’d dreamed up. He never married, but once fell in love with a pigeon at the park, feeding it daily and spending over $2000 dollars on it when its wing was injured.

In his personal life, he was extremely rigid–working and eating at the exact same times every day, eating a very restricted diet, and wearing a fastidiously neat and regimented wardrobe. He was extremely thin and slept very little–perhaps only 2 hours a day. (There are a vanishingly few people in the world who actually do function like this.) He was critical and harsh toward people who didn’t meet his standards, like fat people or secretaries whose clothes he thought were insufficiently attractive. Despite not having any children of his own, he believed the unfit should be sterilized and the rest of the population coerced into a selective breeding program. He also said some unflattering things about Edison upon the man’s death, which is kind of rude.

To prevent him from sinking further into poverty, his former employer, Westinghouse, took pity on him and started paying his hotel bills, (Tesla seems to have not thought of living in a house.) Tesla spent much of his final years claiming to have built a “Death Ray” and claiming that various thieves had broken into his hotel room to steal it.

Upon his death in 1943, the government seized all of his belongings just in case there were actual Death Rays or other such inventions in there that the Nazis might try to steal. The box with Tesla’s Death Ray turned out to have nothing more than an old battery inside. The investigator concluded:

“[Tesla’s] thoughts and efforts during at least the past 15 years were primarily of a speculative, philosophical, and somewhat promotional character often concerned with the production and wireless transmission of power; but did not include new, sound, workable principles or methods for realizing such results.

To be frank, I’ve talked to homeless schizophrenics who sound a lot like Tesla; the line between correct pattern matching and incorrect pattern matching is, at times, easily crossed.

 

The modern habit of shitting on Edison and glorifying Tesla stems from the tendency to see Edison as a stereotypically American businessman who wickedly and cunningly stole ideas from from smarter people to build up his own wealth and reputation. It feeds into the notion that Americans (white Americans, especially,) have built nothing of their own, but stolen all of their wealth and a great many of their ideas from others. Here Tesla–attractive, urbane, brilliant, and most of all, not tainted by the blight of having been born in America–gets to stand in for the usual victimized classes.

Ironically, Edison’s political beliefs line up with the Progressives of his day–that is, socialists/liberals like Teddy Roosevelt and Woodrow Wilson. Tesla, at least as far as the Wikipedia describes any of his beliefs, favored Nazi-style forced sterilization and eugenics. In daily life, Tesla may have been a nicer person than Edison (it is rather difficult to tell from Wikipedia articles what people were like personally,) but I question a left that denigrates one of their own Progressives while upholding a man whose political beliefs are, at best, anathema to their own.

Regardless, Tesla’s failures were not Edison’s fault. Edison may have screwed him on pay, but he didn’t gamble away Tesla’s tuition money, make him fail his classes, nor convince him not to marry. Edison didn’t make him blow his investment money on the stock market or wander around NYC at all hours of the night, feeding pigeons.

Edison, deaf since childhood, didn’t have half the advantages handed to him as Tesla. He had all of three months of schooling; no one ever sent him to university or gave him a scholarship to waste. He may not have been as smart as Tesla, but he was still an intensely intelligent man and adeptly capable of carrying out the business side of the operation, without which no research could get done. Without funding, you don’t have a lab; no lab, no research. Humans do not live in isolation; someone has to do the inglorious work of coordinate things so that other people can reap the benefits of a system set up for them to work in.

Ultimately, Tesla was a brilliant man who should not have been allowed to run his affairs. He needed the structure of a boss, a wife, parents, family, etc., to keep him on track and stop him from doing idiotic things like gambling away his tuition money.

Familial supervision during college could have ensured that he graduated and gotten him on the path toward a tenured position. Perhaps he would have rubbed shoulders with the likes of Einstein and Curie at the Solvay Conference. A boss would have ensured that the strategic, business ends of things–the ends Tesla had no great talent for–got done, leaving Tesla to do the things he did best, to reach far more of his full potential. (In this regard, Edison had advantages Tesla lacked–a wife, family, and a country he had grown up in.) But Tesla was too rigid to submit to someone of inferior intellect (real or perceived), and his family back in Europe was too far away to help him. Loneliness is madness, for humans are social animals, and so brilliant Tesla died alone, poor, and in love with a pigeon.

Tesla's wireless telegraph tower, 1904
Tesla’s wireless telegraph tower, 1904

Just imagine what Edison and Tesla could have created had they put their animosity aside and worked together.

Part 2 coming soon.

 

 

Women in Science–the Bad Old Days

Once we were driving down the highway when my husband said, “Hey, a Federal Reserve Note just flew across the road.”

Me: I think you have been reading too many finance blogs.

 

Oh look, Silver Certificates:

800px-US-$5-SC-1896-Fr.270 Hey, did you know we still have two dollar bills? 800px-US-$1-SC-1896-Fr-224-(3923429)

 

These bills, from the so-called “Education Series,” were printed in 1896 and feature, rather prominently, women. The $1 bill has Martha (and George) Washington. The other bills feature women as allegories of science, history, electricity, commerce, manufacturing, and you know, I can’t really tell if the steam and electricity children are supposed to be male or female.

If someone wants to put women on money, I totally support bringing back these bills, because they’re gorgeous.

There’s a certain sadness in looking at these and thinking, “Gosh, maybe people in the 1800s really were smarter than us.” Today, the five dollar bill would offend too many people (it has a breast on it!) and couldn’t get printed. We’ve become Philistines.

There’s also a sense of, “Wait, are you sure this the bad old days of women’s oppression, when people thought women were dumb and couldn’t handle higher education and shit?” Why would people who think women are dumb use women to illustrate the very concept of “science”?

Here’s a painting of MIT’s Alma Mater (Latin for “Nourishing Mother,”) finished in 1923:

e2b6e964ec0c2ea35ee1cba8f4edc95a

(Sorry it’s a crappy photo. I couldn’t find any good photos.)

“Alma Mater,” of course, is used synonymously with “university.” That is, the university itself (all universities,) is female. From the description:

“The central panel is rigidly symmetrical, with the centrally enthroned Alma Mater approached by two groups of acolytes extending laurel wreaths. The composition deliberately recalls the tradition in Christian art of the ascending Madonna attended by saints and apostles. Alma Mater is surrounded by personifications of learning through the printed page, learning through experiment, and learning through the various branches of knowledge. They hover above the Charles River Basin, with a spectral hint of the MIT buildings in the background.”

Here’s a detail:

Blashfield-popup

Unfortunately, I haven’t found good photos of the side paintings, but they sound dramatic:

“The two side panels … bring the elevated scene down to earth with trees that appear to grow straight up from the floor. Unexplained spectral figures glide through this grove. … The right panel, which has been identified as Humanity Led by Knowledge and Invention depicts a mother and children of varying ages progressing from Chaos to Light, accompanied by cherubs bearing the scales of Justice. On the left, the most dark and dramatic mural squarely faces the ethical challenge that has confronted science from the outset. The Latin inscription (from Genesis) in the roundel spells out: “Ye Shall Be Us Gods Knowing Good and Evil.” The lab-coated scientist is crowned by a figure said to be Hygenia (goddess of Health). He stands between two giant jars containing beneficent and malevolent gasses, symbolizing the constructive and destructive possibilities unleashed with every new discovery. With the horrors of the First World War still fresh, soldiers and diplomats gather at the Council table of the World. Dogs of war lurk near evil gasses, while Famine threatens the background. The strangely out-of-scale, dark colossal head within the shadow of the Tree of Knowledge is said to represent Nature; her relation to the rest of the drama is (perhaps deliberately) unclear.”

If you squint, you might be able to make them out:

morss_center_large

Before art went to shit, the world was full of lovely paintings of things like “Liberty leading the People” or “The Arts and Sciences,” using allegorical human forms that relied upon people’s understanding and knowledge of ancient Greek mythology–not so ancient when people were actually reading it. I suspect there are so few good photos of this painting because people forget, when surrounded by splendor, that splendor is no longer normal.

This habit of using women as allegorical figures to represent science and learning goes back hundreds, if not thousands of years:

These guys thought women were dumb?
12th century illustration of the Seven Liberal Arts: Grammar, Logic, Rhetoric, Arithmetic, Geometry, Music Theory, and Astronomy

The “Liberal Arts” did not originally refer to silly university classes, but to the knowledge thought essential to the education of all free (liber) people, in order to participate properly in civic life. These essential studies were Grammar, Logic, Rhetoric, Arithmetic, Geometry, Music Theory, and Astronomy (one may assume that the functional ability to read is considered a basic prerequisite for learning, not an endpoint in itself as it is in our modern system.) These studies all culminate in their purist expression in Philosophy, the very love of wisdom.

Notice that all of these allegorical figures are women. Did the depiction of women as the purist ideal of mathematical knowledge make male students doubt their own self-worth and drive them away from serious study?

Then why do people think the inverse?

The trend can be traced back further:

Botticelli, Primavera
Botticelli, Primavera

Boticelli depicts the Spring accompanied by the Greek Graces.

Raphael's Parnassus
Raphael’s Parnassus

The Greek Muses were goddesses of inspiration for literature, science, and the arts. Different people list them differently, (I doubt there was ever any widespread agreement on exactly what the muses represented,) but the lists generally look like, “epic poetry, history, music, poetry, tragedy, hymns, dance, comedy, and astronomy,” or “music, science, geography, mathematics, philosophy, art, drama, and inspiration.”

1280px-Muses_sarcophagus_Louvre_MR880

And who can forget Athena herself, goddess of wisdom and warfare?

280px-Athena_aigis_Cdm_Paris_254

220px-Mattei_Athena_Louvre_Ma530_n2

310px-NAMABG-Aphaia_Athena_statue

(Take your artistic pick.)

Who needs Nobel Prize Winners, anyway?

You may have noticed that I like science. I also like scientists–heck, let’s expand this to most of STEM. Good folks.

Scientists tend to be quiet, unassuming folks who get on with the business of making the world a better place by curing cancer, inventing airplanes, and developing the germ theory of disease.

I don’t like it when political ideas try to dictate science. It was bad enough when the Soviet Union tried it (and Maoist China, remember that exciting time when Mao declared that the concept of diminishing returns was bourgeois capitalist lies and that just planting more seeds in your fields would result in more crops, and then millions of people died? Fun times!)

Sometimes scientists say or think unpopular things, like that humans evolved from apes or that some human populations have lower IQs than others. Or that women cry easily or that Global Warming is real.

The mature reaction to someone saying something you find offensive is to make a logical counter-argument. (Or, you know, ignore them.) Indeed, as I’ve said before, one of the beauties of science is that the whole point of it is to disprove incorrect ideas. If there’s an idea floating around in science that you don’t like, well, disprove it with science!

If you can’t, then maybe you’re the one who’s wrong.

Republicans have traditionally been the anti-science side. 49% don’t believe in evolution, versus 37% do. Throwing Democrats and independents into the equation doesn’t help much–overall, 42% of Americans don’t believe in evolution, versus 50% who believe in some form of evolution, (including god-directed evolution):

At least evolution is getting a tiny bit more popular
From Gallup

Unfortunately, a lot of those people who claim to believe in evolution don’t.

For example, according to Gallop, 2005, the majority of Americans–68%–believe that men and women are equally good at math and science. Only 10% believe that men have an innate advantage in math and science, and 8% believe that women are superior.

Do you know how depressing this is? I mean, for starters, the question itself is badly worded. Men and women are about equal on average, but men are disproportionately represented at the high end of mathematical ability and at the low end. As I noted yesterday, this is a natural side effect of Y chromosome variation. But for the purposes of doing math and science as a career, which takes rather more than average talent, men do have an innate advantage.

But instead of getting intelligent discussions about these sorts of things, we get people shouting insults and trying to ruin each other’s careers.

This popped up on FB today:

*winces*
Does this count as a microaggression?

“Sexist,” of course, is an insult, akin to saying that you hate women or believe that they are inherently inferior. So according to these people, anyone who thinks that, IDK, men are more aggressive on average because their brains produce more testosterone is a bad person. Never mind that science supports this notion pretty soundly.

(BTW, it’s pretty hard to argue that society’s anti-woman views are nefariously keeping women out of STEM when the majority of people think men and women are equally talented. For that matter, if there’s any group of people that I’ve found to be extremely accepting of and decent toward women, it’s the folks in STEM. Seriously, these guys are super awesome.)

So you may remember that whole kerfluffle in which Tim Hunt–some nobody who’s contributed nothing of worth to humanity except maybe Nobel Prize-winning work in Medicine/Physiology, small stuff on the scale of human achievement–made some comments about women in science and the entire world spent about 5 minutes losing their collective shit and then a lot of pictures of female scientists got posted on the internet. (Actually, the pictures are kind of nice.)

Oh, and Tim was forced to resign from some honorary professorship.

“The days that followed saw him unceremoniously hounded out of honorary positions at University College London (UCL), the Royal Society and the European Research Council (ERC).

“Under siege at his Hertfordshire home, he sank into despair.

“‘Tim sat on the sofa and started crying. Then I started crying,’ his wife, Professor Mary Collins (herself a prominent scientist) later recalled. ‘We just held on to each other.’”

When it came to light that Tim Hunt may have just been trying to make a joke–a bad one–the provost at his erstwhile University indicated that, (in The Guardian’s words) “Professor Hunt would not be reinstated, it was impossible for an institution to tolerate someone to whom they had awarded an honorary post, even a 71-year-old Nobel prize winner, expressing views even in jest that so comprehensively undermined its own reputation as a leading supporter of female scientists.”

I am just thrilled, oh so thrilled, that university science departments now see their primary purpose as public works programs for women, rather than, IDK, the pursuit of actual fucking science.

Do you know what happens to your science department when you stop focusing on science and turn it into a pity-festival for women? You end up with a bunch of women who can’t hack it in science. Accept men and women on their merits, and you end up with quality scientists. Accept people based on their qualities other than merit, and you end up with hacks.

BTW, I’m female.

You might think Hunt’s comments were totally silly (in which case, go ahead and ignore them,) but I’ve known couples that started in labs. I don’t think it’s any big secret that people sometimes fall in love with co-workers. Is this a problem? I don’t know. Do women cry more than men? Anecdotal experience says yes.

The intelligent response to Hunt’s comments (if you want to do anything at all,) would have been to document whether or not women cry at a higher rate than men when you criticize their lab work and whether lab romances are a problem–and if gender segregated labs would actually work any better, or end up with their own issues. The unintelligent response is to make a big deal out of how offended you are and try to get someone fired.

So what does Connie St Louis, the female scientist journalist who’s actually not a scientist (The Daily Mail claims that St Louis made up/faked a large chunk of her CV, if you believe anything the Daily Mail prints,) and so probably has less experience running a lab than Hunt does, but never mind, we’re all experts now, have to say about starting the whole firestorm that made Hunt lose his probably not very important honorary position?

“The likes of Richard Dawkins and Brian Cox should focus on taking up the real issue of sexism in science. It is absurd to say that scientists can do and say what they like in the name of academic freedom.”

Let’s read that again. “It is absurd to say that scientists can do and say what they like in the name of academic freedom.

What else does St Louis have to say?

“…eight Nobel laureates, plus the ubiquitous Richard Dawkins, have come out in support of Hunt. There are over 2,000 signatures on an online petition to reinstate him to his honorary post at UCL. Contrast this with 200+ signatures on a petition that I started calling on the Royal Society to elect its first female president. The Nobel eight made an idiotic attempt to equate the upset caused by Hunt’s ill advised and sexist comments with some kind of “chilling effect” on academics.”

Of course it has a chilling effect. No one wants to get fired. How does a journalist even presume to claim to know what does and doesn’t have a chilling effect on someone else’s profession, when rather respected people in that profession are claiming that chilling effects exist?

Hell, there’s a reason this blog is anonymous, and it’s people like Connie St Louis. But she continues:

“This is an absurd idea and deserves to be outed for what it is, a deeply cynical attempt to say that scientists can do and say what they like. In the name of academic freedom? Is science so special that any old sexist (or for that matter racist) words that they utter are allowed? The answer is and must be a resounding no.”

Free inquiry is dead.

Remember whom to thank when we all die of cancer plague.