The People Who Went Down the Rivers: Origin of the Sino-Tibetan Language Family

I recently received a question from Quas Lacrimas:

“What (if anything) do you make of the fact that Proto-Tibetan and Proto-Sinitic were sister languages, but Tibetans and Han are so genetically disparate?”

My first response was that, assuming the question itself was correct, then one group must have conquered the other group, imparting its language but not its DNA.

On further reflection, though, I decided it’d be best to check whether the question’s initial premises were correct.

Sino-Tibetan, it turns out, is a legit language family:

The Sino-Tibetan languages, in a few sources also known as Tibeto-Burman or Trans-Himalayan, are a family of more than 400 languages spoken in East Asia, Southeast Asia and South Asia. The family is second only to the Indo-European languages in terms of the number of native speakers. The Sino-Tibetan languages with the most native speakers are the varieties of Chinese (1.3 billion speakers), Burmese (33 million) and the Tibetic languages (8 million). Many Sino-Tibetan languages are spoken by small communities in remote mountain areas and as such are poorly documented.

Map of the Sino-Tibetan language family
Red: Chinese; Yellow: Tibetan; Brown: Karen; Green: Lolo-Burmese; Orange: Other

But the claim that Tibetans and Chinese people are genetically disparate looks more questionable. While the Wikipedia page on Sino-Tibetan claims that, “There is no ethnic unity among the many peoples who speak Sino-Tibetan languages,” in the next two sentences it also claims that, “The most numerous are the Han Chinese, numbering 1.4+ billion(in China alone). The Hui (10 million) also speak Chinese but are officially classified as ethnically distinct by the Chinese government.”

But the Chinese government claiming that a group is an official ethnic group doesn’t make it a genetic group. “Hui” just means Muslim, and Muslims of any genetic background can get lumped into the group. I actually read some articles about the Hui ages ago, and as far as I recall, the category didn’t really exist in any official way prior to the modern PRC declaring that it did for census purposes. Today (or recently) there are some special perks for being an ethnic minority in China, like exceptions to the one-child policy, which lead more people to embrace their “Hui” identity and start thinking about themselves in this pan-Chinese-Muslim way rather than in terms of their local ethnic group, but none of this is genetics.

So right away I am suspicious that this claim is more “these groups see themselves as different” than “they are genetically different.” And I totally agree that Tibetan people and Chinese people are culturally distinct and probably see themselves as different groups.

For genetics, let’s turn back to Haak et al’s representation of global genetics:

Haak et all’s full dataset










Just in case you’re new around here, the part dominated by bright blue is sub-Saharan Africans, the yellow is Asians, and the orange is Caucasians. I’ve made a map to make it easier to visualize the distribution of these groups:

Asian, Australian, and Melanesian ethic groups (including Indian, Middle Eastern, and Chinese) from Haak et al’s dataset

This dataset doesn’t have a Tibetan group, but it does have the Nepalese Kusunda, Mongolic Tu (a Mongolic-language speaking people in China), and the Burmese Lahu. So it’s a start.

The first thing that jumps out at me is that the groups in the Sino-Tibetan language family do not look all that genetically distinct, at least not on a global scale. They’re more similar than Middle Easterners and Europeans, despite the fact that Anatolian farmers invaded Europe several thousand years ago.

The Wikipedia page on Sino-Tibetan notes:

J. A. Matisoff proposed that the urheimat of the Sino-Tibetan languages was around the upper reaches of the Yangtze, Brahmaputra, Salween, and Mekong. This view is in accordance with the hypothesis that bubonic plague, cholera, and other diseases made the easternmost foothills of the Himalayas between China and India difficult for people outside to migrate in but relatively easily for the indigenous people, who had been adapted to the environment, to migrate out.[68]

The Yangtze, Brahmaputra, Salween and Mekong rivers, as you might have already realized if you took a good look at the map at the beginning of the post, all begin in Tibet.

Since Tibet was recently conquered by China, I was initially thinking that perhaps an ancient Chinese group had imposed their language on the Tibetans some time in the remote past, but Tibetans heading downstream and possibly conquering the people below makes a lot more sense.

oh look, it’s our friends the Ainu

According to About World Languages, Proto-Sino-Tibetan may have split into its Tibeto- and Sinitic- branches about 4,000 BC. This is about the same time Proto-Indo-European started splitting up, so we have some idea of what a language family looks like when it’s that old; much older, and the languages start becoming so distinct that reconstruction becomes more difficult.

But if we look at the available genetic data a little more closely, we see that there are some major differences between Tibetans and their Sinitic neighbors–most notably, many Tibetan men belong to Y-Chromosome haplogroup D, while most Han Chinese men belong to haplogroup O with a smattering of Haplogroup C, which may have arrived via the Mongols.

According to Wikipedia:

The distribution of Haplogroup D-M174 is found among nearly all the populations of Central Asia and Northeast Asia south of the Russian border, although generally at a low frequency of 2% or less. A dramatic spike in the frequency of D-M174 occurs as one approaches the Tibetan Plateau. D-M174 is also found at high frequencies among Japanese people, but it fades into low frequencies in Korea and China proper between Japan and Tibet.


It is found today at high frequency among populations in Tibet, the Japanese archipelago, and the Andaman Islands, though curiously not in India. The Ainu of Japan are notable for possessing almost exclusively Haplogroup D-M174 chromosomes, although Haplogroup C-M217 chromosomes also have been found in 15% (3/20) of sampled Ainu males. Haplogroup D-M174 chromosomes are also found at low to moderate frequencies among populations of Central Asia and northern East Asia as well as the Han and Miao–Yao peoples of China and among several minority populations of Sichuan and Yunnan that speak Tibeto-Burman languages and reside in close proximity to the Tibetans.[5]

Unlike haplogroup C-M217, Haplogroup D-M174 is not found in the New World…

Haplogroup D-M174 is also remarkable for its rather extreme geographic differentiation, with a distinct subset of Haplogroup D-M174 chromosomes being found exclusively in each of the populations that contains a large percentage of individuals whose Y-chromosomes belong to Haplogroup D-M174: Haplogroup D-M15 among the Tibetans (as well as among the mainland East Asian populations that display very low frequencies of Haplogroup D-M174 Y-chromosomes), Haplogroup D-M55 among the various populations of the Japanese Archipelago, Haplogroup D-P99 among the inhabitants of Tibet, Tajikistan and other parts of mountainous southern Central Asia, and paragroup D-M174 without tested positive subclades (probably another monophyletic branch of Haplogroup D) among the Andaman Islanders. Another type (or types) of paragroup D-M174 without tested positive subclades is found at a very low frequency among the Turkic and Mongolic populations of Central Asia, amounting to no more than 1% in total. This apparently ancient diversification of Haplogroup D-M174 suggests that it may perhaps be better characterized as a “super-haplogroup” or “macro-haplogroup.” In one study, the frequency of Haplogroup D-M174 without tested positive subclades found among Thais was 10%.

Haplogroup D’s sister clade, Haplogroup E, (both D and E are descended from Haplogroup DE), is found almost exclusively in Africa.

Haplogroup D is therefore very ancient, estimated at 50-60,000 years old. Haplogroup O, by contrast, is only about 30,000 years old.

On the subject of Han genetics, Wikipedia states:

Y-chromosome haplogroup O3 is a common DNA marker in Han Chinese, as it appeared in China in prehistoric times. It is found in more than 50% of Chinese males, and ranging up to over 80% in certain regional subgroups of the Han ethnicity.[100] However, the mitochondrial DNA (mtDNA) of Han Chinese increases in diversity as one looks from northern to southern China, which suggests that male migrants from northern China married with women from local peoples after arriving in modern-day Guangdong, Fujian, and other regions of southern China.[101][102] … Another study puts Han Chinese into two groups: northern and southern Han Chinese, and it finds that the genetic characteristics of present-day northern Han Chinese was already formed as early as three-thousand years ago in the Central Plain area.[109]

(Note that 3,000 years ago is potentially a thousand years after the first expansion of Proto-Sino-Tibetan.)

The estimated contribution of northern Hans to southern Hans is substantial in both paternal and maternal lineages and a geographic cline exists for mtDNA. As a result, the northern Hans are the primary contributors to the gene pool of the southern Hans. However, it is noteworthy that the expansion process was dominated by males, as is shown by a greater contribution to the Y-chromosome than the mtDNA from northern Hans to southern Hans. These genetic observations are in line with historical records of continuous and large migratory waves of northern China inhabitants escaping warfare and famine, to southern China.

Interestingly, the page on Tibetans notes, ” It is thought that most of the Tibeto-Burman-speakers in Southwest China, including the Tibetans, are direct descendants from the ancient Qiang.[6]

On the Qiang:

The term “Qiang” appears in the Classic of Poetry in reference to Tang of Shang (trad. 1675–1646 BC).[14] They seem to have lived in a diagonal band from northern Shaanxi to northern Henan, somewhat to the south of the later Beidi. They were enemy of the Shang dynasty, who mounted expeditions against them, capturing slaves and victims for human sacrifice. The Qiang prisoners were skilled in making oracle bones.[15]

This ancient tribe is said to be the progenitor of both the modern Qiang and the Tibetan people.[16] There are still many ethnological and linguistic links between the Qiang and the Tibetans.[16] The Qiang tribe expanded eastward and joined the Han people in the course of historical development, while the other branch that traveled southwards, crosses over the Hengduan Mountains, and entered the Yungui Plateau; some went even farther, to Burma, forming numerous ethnic groups of the Tibetan-Burmese language family.[17] Even today, from linguistic similarities, their relative relationship can be seen.

So here’s what I think happened (keeping in mind that I am in no way an expert on these subjects):

  1. About 8,000 years ago: neolithic people lived in Asia. (People of some sort have been living in Asia since Homo erectus, after all.) The ancestors of today’s Sino-Tibetans lived atop the Tibetan plateau.
  2. About 6,000 years ago: the Tibetans headed downstream, following the course of local rivers. In the process, the probably conquered and absorbed many of the local tribes they encountered.
  3. About 4,000 years ago: the Han and Qiang are ethnically and linguistically distinct, though the Qiang are still fairly similar to the Tibetans.
  4. The rest of Chinese history: Invasion from the north. Not only did the Mongols invade and kill somewhere between 20 and 60 million Chinese people in the 13th century, but there were also multiple of invasions/migrations by people who were trying to get away from the Mongols.

Note that while the original proto-Sino-Tibetan invasion likely spread Tibetan Y-Chromosomes throughout southern China, the later Mongol and other Chinese invasions likely wiped out a large percent of those same chromosomes, as invaders both tend to be men and to kill men; women are more likely to survive invasions.

Most recently, of course, the People’s Republic of China conquered Tibet in 1951.

I’m sure there’s a lot I’m missing that would be obvious to an expert.

Let’s Talk Genetics (Polish and German)

source: Big Think: Genetic map of Europe

Continuing with our discussion of German/Polish history/languages/genetics, let’s look at what some actual geneticists have to say.

(If you’re joining us for the first time, the previous two posts summarize to: due to being next door to each other and having been invaded/settled over the millennia by groups which didn’t really care about modern political borders, Polish and German DNA are quite similar. More recent events, however, like Germany invading Poland and trying to kill all of the Poles and ethnic Germans subsequently fleeing/being expelled from Poland at the end of the war have created conditions necessary for genetic differentiation in the two populations.)

So I’ve been looking up whatever papers I can find on the subject.

In Contemporary paternal genetic landscape of Polish and German populations: from early medieval Slavic expansion to post-World War II resettlements, Rebala et al write:

The male genetic landscape of the European continent has been shown to be clinal and influenced primarily by geography rather than by language.1 One of the most outstanding phenomena in the Y-chromosomal diversity in Europe concerns the population of Poland, which reveals geographic homogeneity of Y-chromosomal lineages in spite of a relatively large geographic area seized by the Polish state.2 Moreover, a sharp genetic border has been identified between paternal lineages of neighbouring Poland and Germany, which strictly follows a political border between the two countries.3 Massive human resettlements during and shortly after the World War II (WWII), involving millions of Poles and Germans, have been proposed as an explanation for the observed phenomena.2, 3 Thus, it was possible that the local Polish populations formed after the early Slavic migrations displayed genetic heterogeneity before the war owing to genetic drift and/or gene flow with neighbouring populations. It has been also suggested that the revealed homogeneity of Polish paternal lineages existed already before the war owing to a common genetic substrate inherited from the ancestral Slavic population after the Slavs’ early medieval expansion in Europe.2 …

We used high-resolution typing of Y-chromosomal binary and microsatellite markers first to test for male genetic structure in the Polish population before massive human resettlements in the mid-20th century, and second to verify if the observed present-day genetic differentiation between the Polish and German paternal lineages is a direct consequence of the WWII or it has rather resulted from a genetic barrier between peoples with distinct linguistic backgrounds. The study further focuses on providing an answer to the origin of the expansion of the Slavic language in early medieval Europe. For the purpose of our investigation, we have sampled three pre-WWII Polish regional populations, three modern German populations (including the Slavic-speaking Sorbs) and a modern population of Slovakia. …

AMOVA in the studied populations revealed statistically significant support for two linguistically defined groups of populations in both haplogroup and haplotype distributions (Table 2). It also detected statistically significant genetic differentiation for both haplogroups and haplotypes in three Polish pre-WWII regional populations (Table 2). The AMOVA revealed small but statistically significant genetic differentiation between the Polish pre-war and modern populations (Table 2). When both groups of populations were tested for genetic structure separately, only the modern Polish regional samples showed genetic homogeneity (Table 2). Regional differentiation of 10-STR haplotypes in the pre-WWII populations was retained even if the most linguistically distinct Kashubian speakers were excluded from the analysis (RST=0.00899, P=0.01505; data not shown). Comparison of Y chromosomes associated with etymologically Slavic and German surnames (with frequencies provided in Table 1) did not reveal genetic differentiation within any of the three Polish regional populations for all three (FST, ΦST and RST) genetic distances. Moreover, the German surname-related Y chromosomes were comparably distant from Bavaria and Mecklenburg as the ones associated with the Slavic surnames (Supplementary Figure S2). MDS of pairwise genetic distances showed a clear-cut differentiation between German and Slavic samples (Figure 2). In addition, the MDS analysis revealed the pre-WWII populations from northern, central and southern Poland to be moderately scattered in the plot, on the contrary to modern Polish regional samples, which formed a very tight, homogeneous cluster (Figure 3).

Nicolaus Copernicus, Polish astronomer famous for developing heliocentric model of the solar system

This all seems very reasonable. Modern Poland is probably more homogenous than pre-war Poland in part because modern Poles have cars and trains and can marry people from other parts of Poland much more easily than pre-war Poles could, and possibly because the war itself reduced Polish genetic diversity and displaced much of the population.

Genetic discontinuity along the Polish-German border also makes sense, as national, cultural, and linguistic boundaries all make intermarriage more difficult.

The Discussion portion of this paper is very interesting; I shall quote briefly:

Kayser et al3 revealed significant genetic differentiation between paternal lineages of neighbouring Poland and Germany, which follows a present-day political border and was attributed to massive population movements during and shortly after the WWII. … it remained unknown whether Y-chromosomal diversity in ethnically/linguistically defined Slavic and German populations, which used to be exposed to intensive interethnic contacts and cohabit ethnically mixed territories, was clinal or discontinuous already before the war. In contrast to the regions of Kaszuby and Kociewie, which were politically subordinated to German states for more than three centuries and before the massive human resettlements in the mid-20th century occupied a narrow strip of land between German-speaking territories, the Kurpie region practically never experienced longer periods of German political influence and direct neighbourhood with the German populations. Lusatia was conquered by Germans in the 10th century and since then was a part of German states for most of its history; the modern Lusatians (Sorbs) inhabit a Slavic-speaking island in southeastern Germany. In spite of the fact that these four regions differed significantly in exposure to gene flow with the German population, our results revealed their similar genetic differentiation from Bavaria and Mecklenburg. Moreover, admixture estimates showed hardly detectable German paternal ancestry in Slavs neighbouring German populations for centuries, that is, the Sorbs and Kashubes. However, it should be noted that our regional population samples comprised only individuals of Polish and Sorbian ethnicity and did not involve a pre-WWII German minority of Kaszuby and Kociewie, which owing to forced resettlements in the mid-20th century ceased to exist, and also did not involve Germans constituting since the 19th century a majority ethnic group of Lusatia. Thus, our results concern ethnically/linguistically rather than geographically defined populations and clearly contrast the broad-scale pattern of Y-chromosomal diversity in Europe, which was shown to be strongly driven by geographic proximity rather than by language.1 …

Two main factors are believed to be responsible for the Slavic language extinction in vast territories to the east of the Elbe and Saale rivers: colonisation of the region by the German-speaking settlers, known in historical sources as Ostsiedlung, and assimilation of the local Slavic populations, but contribution of both factors to the formation of a modern eastern German population used to remain highly speculative.8 Previous studies on Y-chromosomal diversity in Germany by Roewer et al17 and Kayser et al3 revealed east–west regional differentiation within the country with eastern German populations clustering between western German and Slavic populations but clearly separated from the latter, which suggested only minor Slavic paternal contribution to the modern eastern Germans. Our ancestry estimates for the Mecklenburg region (Supplementary Table S3) and for the pooled eastern German populations, assessed as being well below 50%, definitely confirm the German colonisation with replacement of autochthonous populations as the main reason for extinction of local Slavic vernaculars. The presented results suggest that early medieval Slavic westward migrations and late medieval and subsequent German eastward migrations, which outnumbered and largely replaced previous populations, as well as very limited male genetic admixture to the neighbouring Slavs (Supplementary Table S4), were likely responsible for the pre-WWII genetic differentiation between Slavic- and German-speaking populations. Woźniak et al18 compared several Slavic populations and did not detect such a sharp genetic boundary in case of Czech and Slovak males with genetically intermediate position between other Slavic and German populations, which was explained by early medieval interactions between Slavic and Germanic tribes on the southern side of the Carpathians. Anyway, paternal lineages from our Slovak population sample were genetically much closer to their Slavic than German counterparts. …

Note that they are discussing paternal ancestry. This does not rule out the possibility of significant Slavic maternal ancestry. Finally:

Our coalescence-based divergence time estimates for the two isolated western Slavic populations almost perfectly match historical and archaeological data on the Slavs’ expansion in Europe in the 5th–6th centuries.4 Several hundred years of demographic expansion before the divergence, as detected by the BATWING, support hypothesis that the early medieval Slavic expansion in Europe was a demographic event rather than solely a linguistic spread of the Slavic language.

Marian Rejewski, Polish mathematician and cryptologist who reconstructed the Nazi German military Enigma cipher machine sight-unseen in 1932

I left out a lot of interesting material, so I recommend reading the complete discussion if you want to know more about Polish/German genetics.

But what about the maternal contribution? Luckily for us, Malyarchuk et al have written Mitochondrial DNA analysis in Poles and Russians:

Mitochondrial DNA (mtDNA) sequence variation was examined in Poles (from the Pomerania-Kujawy region; n = 436) and Russians (from three different regions of the European part of Russia; n = 201)… The classification of mitochondrial haplotypes revealed the presence of all major European haplogroups, which were characterized by similar patterns of distribution in Poles and Russians. An analysis of the distribution of the control region haplotypes did not reveal any specific combinations of unique mtDNA haplotypes and their subclusters that clearly distinguish both Poles and Russians from the neighbouring European populations. The only exception is a novel subcluster U4a within subhaplogroup U4, defined by a diagnostic mutation at nucleotide position 310 in HVS II. This subcluster was found in common predominantly between Poles and Russians (at a frequency of 2.3% and 2.0%, respectively) and may therefore have a central-eastern European origin. …

The analysis of mtDNA haplotype distribution has shown that both Slavonic populations share them mainly with Germans and Finns. The following numbers of the rare shared haplotypes and subclusters were found between populations analyzed: 10% between Poles and Germans, 7.4% between Poles and Russians, and 4.5% between Russians and Germans. A novel subcluster U4-310, defined by mutation at nucleotide position 310 in HVS II, was found predominantly in common between Poles and Russians (at frequency of 2%). Given the relatively high frequency and diversity of this marker among Poles and its low frequency in the neighbouring German and Finnish populations, we suggest a central European origin of U4-310, following by subsequent dispersal of this mtDNA subgroup in eastern European populations during the Slavonic migrations in early Middle Ages.

In other words, for the most part, Poles, Russians, Germans, and even Finns(!) (who do not speak an Indo-European language and are usually genetic outliers in Europe,) all share their maternal DNA.

Migrants, immigrants, and invaders tend disproportionately to be male (just look at any army) while women tend to stay behind. Invading armies might wipe each other out, but the women of a region are typically spared, seen as booty similar to cattle to be distributed among the invaders rather than killed. Female populations therefore tend to be sticky, in a genetic sense, persisting long after all of the men in an area were killed and replaced. The dominant Y-chromosome haplogroup in the area (R1a) hails from the Indo-European invasion (except in Finland, obviously,) but the mtDNA likely predates that expansion.

These data allow us to suggest that Europeans, despite their linguistic differences, originated in the common genetic substratum which predates the formation of the most modern European populations. It seems that considerable genetic similarity between European populations, which has been revealed by mtDNA variation studies, was further accelerated by a process of gene redistribution between populations due to the multiple migrations occurring in Europe during the past milenia…

It is interesting, though, that recent German invasions of Poland left very little in the way of a genetic contribution. I’d wager that WWII was quite a genetic disaster for everyone involved.

If you want more information, Khazaria has a nice list of studies plus short summaries on Polish DNA.

On Germanic and Polish DNA

Distribution of Y-chromosomal haplogroup I1a in Europe.

Commentator Unknown123 asks what we can tell about the differences between German and Polish DNA. Obviously German is here referring to one of the Germanic peoples who occupy the modern nation of Germany and speak a Germanic language. But as noted before, just because people speak a common language doesn’t necessarily mean they have a common genetic origin. Germans and English both speak Germanic languages , but Germans could easily share more DNA with their Slavic-language speaking neighbors in Poland than with the English.

According to Wikipedia, the modern Germanic peoples include Afrikaners, Austrians, Danes, Dutch, English, Flemish, Frisians, Germans, Icelanders, Lowland Scots, Norwegians, and Swedes.[225][226]

And here is a map that is very suggestive of Viking raiders:

(It’s also not a bad map of the distribution of Germanic peoples in 750 BC.)

Wikipedia states:

It is suggested by geneticists that the movements of Germanic peoples has had a strong influence upon the modern distribution of the male lineage represented by the Y-DNA haplogroup I1, which is believed to have originated with one man, who lived approximately 4,000 to 6,000 years somewhere in Northern Europe, possibly modern Denmark … There is evidence of this man’s descendants settling in all of the areas that Germanic tribes are recorded as having subsequently invaded or migrated to.[220][v] However, it is quite possible that Haplogroup I1 is pre-Germanic, that is I1 may have originated with individuals who adopted the proto-Germanic culture, at an early stage of its development or were co-founders of that culture. Should that earliest Proto-Germanic speaking ancestor be found, his Y-DNA would most likely be an admixture of the aforementioned I1, but would also contain R1a1a, R1b-P312 and R1b-U106, a genetic combination of the haplogroups found among current Germanic speaking peoples.[221] …

Haplogroup I1 accounts for approximately 40% of Icelandic males, 40%–50% of Swedish males, 40% of Norwegian males, and 40% of Danish Human Y-chromosome DNA haplogroups. Haplogroup I1 peaks in certain areas of Northern Germany and Eastern England at more than 30%. Haplogroup R1b and haplogroup R1a collectively account for more than 40% of males in Sweden; over 50% in Norway, 60% in Iceland, 60–70% in Germany, and between 50%–70% of the males in England and the Netherlands depending on region.[222]

Note, though, that this map has some amusing results; clearly it’s a more Nordic distribution than specifically German, with “Celtic” Ireland just as Nordic as much of England and Germany.

Wikipedia also states:

According to a study published in 2010, I-M253 originated between 3,170 and 5,000 years ago, in Chalcolithic Europe.[1] A new study in 2015 estimated the origin as between 3,470 and 5,070 years ago or between 3,180 and 3,760 years ago, using two different techniques.[2] It is suggested that it initially dispersed from the area that is now Denmark.[8]

A 2014 study in Hungary uncovered remains of nine individuals from the Linear Pottery culture, one of whom was found to have carried the M253 SNP which defines Haplogroup I1. This culture is thought to have been present between 6,500 and 7,500 years ago.[12]


In 2002 a paper was published by Michael E. Weale and colleagues showing genetic evidence for population differences between the English and Welsh populations, including a markedly higher level of Y-DNA haplogroup I in England than in Wales. They saw this as convincing evidence of Anglo-Saxon mass invasion of eastern Great Britain from northern Germany and Denmark during the Migration Period.[13] The authors assumed that populations with large proportions of haplogroup I originated from northern Germany or southern Scandinavia, particularly Denmark, and that their ancestors had migrated across the North Sea with Anglo-Saxon migrations and DanishVikings. The main claim by the researchers was:

“That an Anglo-Saxon immigration event affecting 50–100% of the Central English male gene pool at that time is required. We note, however, that our data do not allow us to distinguish an event that simply added to the indigenous Central English male gene pool from one where indigenous males were displaced elsewhere or one where indigenous males were reduced in number … This study shows that the Welsh border was more of a genetic barrier to Anglo-Saxon Y chromosome gene flow than the North Sea … These results indicate that a political boundary can be more important than a geophysical one in population genetic structuring.”

In 2003 a paper was published by Christian Capelli and colleagues which supported, but modified, the conclusions of Weale and colleagues.[14] This paper, which sampled Great Britain and Ireland on a grid, found a smaller difference between Welsh and English samples, with a gradual decrease in Haplogroup I frequency moving westwards in southern Great Britain. The results suggested to the authors that Norwegian Vikings invaders had heavily influenced the northern area of the British Isles, but that both English and mainland Scottish samples all have German/Danish influence.

But the original question was about Germany and Poland, not England and Wales, so we are wandering a bit off-track.

source: Big Think: Genetic map of EuropeLuckily for me, Wikipedia helpfully has a table of European Population Genetic Substructure based on SNPs[48][59]. We’ll be extracting the most useful parts.

A score of “1” on this graph means that the two populations in question are identical–fully inter-mixing. The closer to 1 two groups score, the more similar they are. The further from one they score, (the bigger the number,) the more different they are.

Why isn't it in English? Oh, well. We'll manage.
Here is a potentially relevant map of the neolithic cultures of Europe

For example, the most closely related peoples on the graph are Austrians and their neighbors in southern Germany and Hungary (despite Hungarians speaking a non-Indo-European language brought in by recent steppe invaders.) Both groups scored 1.04 relative to Austrians, and a 1.08 relative to each other.

Northern and southern Germans also received a 1.08–so southern Germans are about as closely related to northern Germans as they are to Hungarians, and are more closely related to Austrians than to northern Germans.

This might reflect the pre-Roman empire population in which (as we discussed in the previous post) the Celtic cultures of Hallstatt and La Tene dominated a stretch of central Europe between Austria and Switzerland, with significant expansion both east and west, whilst the proto-Germanic peoples occupied northern Germany and later spread southward.

The least closely related peoples on the graph are (unsurprisingly) the Sami (Lapp) town of Kuusamo in northeastern Finland and Spain, at 4.21. (Finns are always kind of outliers in Europe, and Spaniards are kind of outliers in their own, different way, being the part of mainland Europe furthest from the Indo-European expansion starting point and so having received fewer invaders.

So what does the table say about Germans and their neighbors?

source: Big Think: Genetic map of Europe

Northern Germany:
South Germany 1.08
Austria 1.10
Hungary 1.11
Sweden 1.12
Czech Repub 1.15
Poland 1.18
France 1.25
Bulgaria 1.32
Switzerland 1.36

Southern Germany:
Austria 1.04
North Germany 1.08
Hungary 1.08
France 1.12
Czech Repub 1.16
Switzerland 1.17
Bulgaria 1.19
Latvia 1.20
Sweden 1.21
Poland 1.23


Czech Repub 1.09
Hungary: 1.14
Estonia 1.17
North Germany 1.18
Russia 1.18
Austria 1.19
Lithuania 1.20
South Germany 1.23
Latvia: 1.26
Bulgaria 1.29
Sweden 1.30
Switzerland 1.46

Obviously I didn’t include all of the data in the original table; all of the other sampled European groups, such as Italians, Spaniards, and Finns are genetically further away from north and south Germany and Poland than the listed groups.

So northern Germany and Poland are quite closely related–even closer than northern Germans are to the French (whose country is named after a Germanic tribe, the Franks, who conquered it during the Barbarian Migrations at the Fall of the Roman Empire,) or the Swiss, many of whom speak German. By contrast, southern Germany is more closely related to France and Switzerland than to Poland, but still more closely related to the Poles than Italians or Spaniards.

To be continued…

The Modern Ainu, pt 2

Welcome back, everyone. Yesterday we were discussing Ainu genetics. Today we’re still discussing Ainu genetics, but this time we’re discussing mtDNA instead of Y DNA.

Modern Ainu (political protest) in 1992

Based on analysis of one sample of 51 modern Ainus, their mtDNA lineages have been reported to consist mainly of haplogroup Yhaplogroup Dhaplogroup M7a … and haplogroup G1[49][52][53] Other mtDNA haplogroups detected in this sample include A (2/51), M7b2 (2/51), N9b (1/51), B4f (1/51), F1b (1/51), and M9a (1/51). Most of the remaining individuals in this sample have been classified definitively only as belonging to macro-haplogroup M.[52] According to Sato et al. (2009), who have studied the mtDNA of the same sample of modern Ainus (n=51), the major haplogroups of the Ainu are N9 (14/51 = 27.5%, including 10/51 Y and 4/51 N9(xY)), D (12/51 = 23.5%, including 8/51 D(xD5) and 4/51 D5), M7 (10/51 = 19.6%), and G (10/51 = 19.6%, including 8/51 G1 and 2/51 G2); the minor haplogroups are A (2/51), B (1/51), F (1/51), and M(xM7, M8, CZ, D, G) (1/51).[54]

Note that Y (confusingly named) is a sub-haplogroup of N9. It’s commonly found in groups around the Sea of Okhotsk, (including the Ainu,) and in Indonesia, similar to the distribution of Sundadont teeth. Haplogroup D is found in Native Americans (highest frequency among the Aleuts,); Siberians, Ainu, east Asians, Japanese, etc. M7 is kind of generically east-Asian, with high frequency in Japan. In other words, Ainu maternal DNA is fairly similar to that of Japan at large + nearby Siberians.

So how closely related are the Ainu to rest of the Japanese?

Given the archaeology of the area and what we now know of the genetics, it looks like the Ainu were descended primarily from two main groups:

  1. Jomon, (the ancient people of Japan,)
  2. Nearby Siberians, (eg, the Nivkhs.)

Over the past hundred years or so, though, the Ainu have purposefully intermarried with the non-Ainu Japanese, who are themselves descended from a mix of:

  1. Jomon
  2. Yayoi, who invaded around 300 BC, conquering the Jomon.

We’d expect therefore for the Ainu and Japanese to share a fair amount of their mtDNA (the Yayoi probably absorbed Jomon women into their groups;) but not much Y DNA. According to Wikipedia:

Studies published in 2004 and 2007 show the combined frequency of M7a and N9b were observed in Jomons and which are believed by some to be Jomon maternal contribution at 28% in Okinawans (7/50 M7a1, 6/50 M7a(xM7a1), 1/50 N9b), 17.6% in Ainus (8/51 M7a(xM7a1), 1/51 N9b), and from 10% (97/1312 M7a(xM7a1), 1/1312 M7a1, 28/1312 N9b) to 17% (15/100 M7a1, 2/100 M7a(xM7a1)) in mainstream Japanese.[55][56]

A recent reevaluation of cranial traits suggests that the Ainu resemble the Okhotsk more than they do the Jōmon.[57] This agrees with the reference to the Ainu being a merger of Okhotsk and Satsumon referenced above.

map of gene-flow in and out of Beringia, from 25,000 years ago to present

Now certainly, if we can use DNA testing to tell that someone is “half Spaniard, a quarter Finnish, and a quarter Czech, with 3% Neanderthal DNA,” then we can use DNA testing to tell what %s of someone’s ancestry are Japanese, Ainu, Jomon, Yayoi, Siberian, etc.–it’s just a matter of getting enough relevant samples. The only major issue I could see getting in the way is if there actually is no such thing as a genetically “pure” Ainu, but rather a bunch of small Ainu groups with varying levels of admixture from all of the other groups. For example, there is no such thing as “Turkic” genetics–all “Turkic” groups speak Turkic languages, take great pride in being Turkic, and presumably have cultural connections, but genetically they are quite diverse. The situation is similar with Jewish groups. 2000 years ago, most Jews were genetically “Jewish,” but today, the vast majority of Jews are at least 50% non-ancient Hebrew by DNA.

From Ingold


But of course, genetics doesn’t tell you much about the lives of modern Ainu.

Many people theorize recent connections between all of the peoples along the north Pacific rim, from Japan to Oregon, and northward across Canada, based on similar abstract, geometric art styles; lifestyles; and documented contacts. The eternally-controversial Kennewick man (a 9,000 year old skeleton discovered in Washington State,) was initially described by some anthropologists as resembling an Ainu man. Mister Kennewick has since been proven to be related to modern Native Americans–Native Americans may simply have looked different 9,000 years ago.

I look forward to more research on connections between circum-polar and circum-Pacific peoples.

For further reading and interesting photos, I recommend The Ainu and their Culture by Dubreuil.

By Request: The Modern Ainu pt 1

Old photograph of an Ainu man

Most of the information easily available on the internet speaks of the Ainu in the past tense: The Ainu were hunter-gatherers; the Ainu worshiped; the Ainu were conquered. The photographic situation is similar: an image search for “Ainu” brings up a few dozen century-old photos and not much else.

But the modern Ainu, of course, do not live in the past–they live in today, primarily in the very modern city of Sapporo. The modern Ainu are not hunter-gatherers (although the entire nation of Japan remains highly dependent on fishing for its nutrition;) they are doctors and shop-keepers, office workers and artists. They go to school, keep up with modern fashions, play video games, and ride the shinkansen just like everyone else in Japan.

Wikipedia (and everyone else) estimates that about 25,000 Ainu live today in Japan, with the caveat that since the Ainu don’t always bother to mention their ancestry, there could be a couple hundred thousand who just haven’t been counted.

Due to years of inter-marrying, the vast majority of today’s Ainu are at least part Japanese. One reference I recall estimated that about 300 pure-blooded Ainu remained in 1950; another estimated that 200 remain today.

There are also some Ainu living in Russia; according to Wikipedia, about 100 Russians tried to identify as Ainu in the 2010 census, and nearly a thousand people with some degree of Ainu ancestry live in the area.

Alas for my purposes as a writer, these few remaining folks appear to be living their lives out in anthropological anonymity, rather than posting selfies tagged #RealAinu all over the internet.

The one thing everyone likes to argue about in threads about the Ainu is whether or not they look like white people.

It’s kind of dumb to fight about, since obviously Ainu look like Ainu.

Okay, okay. Don’t start a flame war. According to Wikipedia:

Cavalli-Sforza places the Ainu in his “Northeast and East Asian” genetic cluster.[42] …

Turner found remains of Jōmon people of Japan to belong to Sundadont pattern similar with the Southern Mongoloid living populations of Taiwanese aborigines, Filipinos, Indonesians, Thais, Borneans, Laotians, and Malaysians. …

Genetic testing has shown them to belong mainly to Y-haplogroup D-M55.[49] Y-DNA haplogroup D2 is found frequently throughout the Japanese Archipelago including Okinawa. The only places outside Japan in which Y-haplogroup D is common are Tibet in China and the Andaman Islands in the Indian Ocean.[50]

Your Y-haplogroup traces your paternal ancestry, because men (and only men) inherit their Y-chromosomes from their fathers. Your M or Mt-DNA, (short for mitochondrial DNA,) hails exclusively from your mother (and both men and women have Mt-DNA, because we all have mitochondria.)

Often when one group of people conquers another group of people, their descendants end up with Y-DNA from the conquerors and MtDNA from the conquered, but there are other ways people come together, like folks intermarrying with their neighbors.

(Presumably this study was done with relatively pure-blooded Ainu.)

The distribution of Haplogroup D-M174 is quite suggestive: Ainu, Tibetans, and Andaman Islanders. These are three (historically) highly isolated groups–one of the world’s few remaining basically uncontacted peoples, the Sentinelese, (they’ll put a spear in you if you land on their island) live in the Andaman Islands. The Tibetans, as I’ve mentioned, have inherited DNA from the Denisovans–cousins of the Neanderthals who interbred with their ancestors–that lets them breathe more easily at high altitudes than anyone else on Earth, making it rather hard for non-Tibetans move there, much less conquer and occupy it [Note: I wouldn’t be surprised if the Nepalese or other folks who also live up in the Himalayas also have the adaptation; this isn’t meant to be a discussion of modern political borders.] And the Ainu basically live on the far edge of Asian at the southern edge of Siberia–northern Japan is the snowiest populated place in the world.

“Sinodont” and “sundadont” actually refer to two different tooth shapes.

East Asian genetic tree, showing Ainu, Japanese, Koreans, etc

Tibetans and Andaman Islanders are definitely Asians–they clade with other Asians in the Greater Asian Clade–but they don’t look much alike. You wouldn’t mistake them for Caucasians, though.

Haplogroup D-M174 is believed to have evolved about 50-60-thousand years ago, presumably in Asia. This was shortly after the Out-of-Africa event, which occurred about 70,000 (or possibly 100,000 years ago [there might have been more than one OOA.]) D-M174 is so old that its “parent” haplogroup is DE, which is found in Africa and Asia.

By contrast, the mutation to the EDAR-gene which gives Han Chinese (the Asian ethnic group Americans are most familiar with) and Japanese their characteristic hair, skin, tooth shape, build, etc., (EDAR is pretty incredible in that way) only occurred 30,000 years ago–that is, the Ainu split off from other Asians 20-30 thousand years before what we think of as “the Asian look” had even evolved.

For that matter, Caucasian themselves only appear to have split off from Asians around 40,000 years ago–10,000 years before EDAR mutated, but 10-20,000 years after D-M174 arose.

Or to put it another way:

About 70,000 years ago, an intrepid band of explorers left Africa. Presumably, these people looked African, but I don’t know exactly which Africans these ancient people looked like–perhaps they didn’t really look like any modern group; perhaps they looked a lot like most Sub-Saharan Africans; perhaps they looked like the Bushmen, noted for their tawny skin tones and more “Asian” look than other Sub-Saharans. I don’t know yet.

About 60,000 years ago, the band split, and one group spread far across Asia. Their modern descendants are the Ainu, Tibetans, and Andaman Islanders.

The other group presumably hung out in central Eurasia, until about 40,000 years ago, when it definitively split. One group went west and became the Caucasians; the other became the Han.

Around 30,000 years, the distinctive EDAR mutation that gives east-Asians their “typical” appearance evolved.

Around 10,000 years ago, more or less, Europeans began getting lighter, and “whiteness” as we know it evolved.

Oki Kano, Ainu Musician

So… could the Ainu retain some traits or have never obtained some traits–like epicanthic folds at the corners of their eyes–which make them look more like their ancestral group, to which the ancestors of both Asians and Caucasians belonged? Sure. Could they have just evolved traits to deal with the extremely cold, near-Siberian environment they lived in that happened to resemble traits that evolved in European populations dealing with a similarly cold environment? Sure.

But are they Caucasians? Not even remotely.

And in my opinion, they don’t look Caucasian, at least not when their faces aren’t covered with big, bushy beards. (The modern Ainu tend to shave.) Take, for example, Oki Kano, an Ainu musician. Nothing about his appearance says, “Mysterious tribe of lost Caucasians.”

Back to Wikipedia:

In a study by Tajima et al. (2004), two out of a sample of sixteen (or 12.5%) Ainu men have been found to belong to Haplogroup C-M217, which is the most common Y-chromosome haplogroup among the indigenous populations of Siberia and Mongolia.[49] … Some researchers have speculated that this minority of Haplogroup C-M217 carriers among the Ainu may reflect a certain degree of unidirectional genetic influence from the Nivkhs, a traditionally nomadic people of northern Sakhalin and the adjacent mainland, with whom the Ainu have long-standing cultural interactions.[49]

The Nivkhs live basically next door and have a lot of cultural similarities–for example, both groups traditionally had shamanic rituals involving bears, which they raised and then sacrificed:

Nivkh Shamans also presided over the Bear Festival, a traditional holiday celebrated between January and February depending on the clan. Bears were captured and raised in a corral for several years by local women, treating the bear like a child.[34] The bear was considered a sacred earthly manifestation of Nivkh ancestors and the gods in bear form (see Bear worship). During the Festival, the bear would be dressed in a specially made ceremonial costume. It would be offered a banquet to take back to the realm of gods to show benevolence upon the clans.[29] After the banquet, the bear would be sacrificed and eaten in an elaborate religious ceremony. Often dogs were sacrificed as well. The bear’s spirit returned to the gods of the mountain ‘happy’ and would then reward the Nivkh with bountiful forests.[35]

A very similar ceremony, Iomante, is practiced by the Ainu people of Japan.

While haplogroup D-M174 shows affinity with more southerly Asian groups, like the Tibetans or Andaman Islanders, haplogroup C-M217 is found throughout northern Asia (principally Siberia) and northern North America.

To be continued…

Rafflesia: the Parasitic Flowers of Breath of the Wild

Let’s consider the similarities between the fairy fountains found in Nintendo’s new Legend of Zelda installment, Breath of the Wild, and the enormous blooms of our terrestrial Rafflesia genus.

Rafflesia Arnoldii hold the record for world’s largest flowers, growing regularly to a width of 3 feet and weighing up to 24 pounds. Their central chamber is large enough to put a baby in, if you aren’t too perturbed by their odd spiky structures and horrific smell.

The Fairy Fountain is obviously the largest flower in Breath of the Wild and has a central chamber similar to Rafflesia’s; an enormous fairy woman lives inside.

Rafflesia is a parasitic plant which actually has no stems, leaves, roots, or even chlorophyll! (This has made tracing its genetic relationships to other plants difficult for scientists, because most of what we know about plant relationships is based off comparing differences in their chlorophyll’s DNA.) The only visible parts of the plant are its buds and, subsequently, the flowers they open into.

Likewise, the Fairy Fountain has no leaves, stems, or other visible plant parts–it is just a bud that opens into a flower. (However, the fairy fountain bud is green. Perhaps it would have looked too much like a giant nut if it were brown like the true Rafflesia.)

The rest of Rafflesia’s structure is hidden within the vines it parasitizes. When not in bloom, it’s just a network within the vine, just as a mushroom’s principle structures lie hidden within the ground or rotting logs.

The Fairy Fountain is surrounded by mushrooms, which suggest their similarity to the fountain’s hidden structure.

Rafflesia’s enormous size is due to the fact that it is pollinated by carrion flies, who are attracted to the largest carcasses they can find. Unfortunately, this also means that Rafflesia smells like rotting meat, earning it various unsavory names like “corpse flower.” It also possesses the remarkable ability to generate heat, creating a warm, comfortable environment for flies to congregate in.

In Breath of the Wild, the Fairy Fountain is also home to flies, though these are thankfully the much less smelly, tiny winged fairy kind.

What about pollen? According to Harvard Magazine:

“The pollen is incredible,” Davis continues. In most plants, the pollen is powdery, but in Rafflesia, it is “produced as a massive quantity of viscous fluid, sort of like snot, that dries on the backs of these flies—and presumably remains viable for quite a long time,” perhaps weeks. In their pollinating efforts, the flies may travel as much as 12 to 14 miles.

I don’t have a very good sense of scale in Breath of the Wild, but 12 or 14 miles between Fairy Fountains sounds about right. By picking up fairies at one fountain and carrying them to the next, Link is helping this likely endangered Hylian species reproduce.

Likewise, the center of the enormous Fairy Fountains is filled not with powder, but some kind of… liquid.

Flower snot.

Or it might just be water:

Vines move massive quantities of water, which may be one of the physiological reasons that Rafflesia colonize them, he explains. The flowers, which to the touch are like “a Nerf football that is wet,” are mostly water themselves, and the exponential growth of the blooms in the final stages of development is made possible “primarily by pumping massive quantities of water into the flower.”

That’s a lot like what I imagine the Fairy Fountain would feel like, too.

But the really interesting thing about Rafflesia is their genes:

Given his mandate to establish a phylogeny for the order Malpighiales, Davis set out, dutifully, to duplicate the published result for Rafflesia. What he found was not just unexpected. It absolutely astounded him. Some of the genes he sequenced confirmed that Rafflesia were indeed part of Malpighiales—but other sequenced genes placed them in an entirely different order (Vitales)—with their host plants. Davis had stumbled upon a case of massive horizontal gene transfer, the exchange of genetic information between two organisms without sex. …

The work is also facilitating the identification of Rafflesia’s past hosts, since many of the transgenes Davis found came from lineages of plants other than Tetrastigma, the current host. These ancient parasite/host associations, a kind of molecular fossil record, could be used to elucidate the timing and origin of plant parasitism itself.

Davis found that the host plant contributed about 2 percent to 3 percent of Rafflesia’s expressed nuclear genome (genes in the cell nucleus), and as much as 50 percent of its mitochondrial genome (genes that govern energy production). The sheer scale of the transfer was so far-fetched, his collaborator at the time at first didn’t believe that the findings could be accurate. The paper, published in 2012, demonstrated that intimate host/parasite connections are potentially an important means by which horizontal gene transfers can occur. And it showed that the physiological invisibility of Rafflesia within the host is echoed in its genes: the host and parasite share so much biology that the boundaries between them have become blurred.

Intriguingly, some of the transferred genes swap in at precisely the same genetic location as in the parasite’s own genome. “One of the ideas that we are exploring,” says Davis, “is whether maintaining these transferred genes might provide a fitness advantage for the parasite. Might these transfers be providing a kind of genetic camouflage so that the host can’t mount an immune response to the parasite that lives within it?”

And finally, Rafflesia flowers and the Fairy Fountain are basically the same color: both are both reddish with white mottling.

Addendum to Race: The Social Construction of a Biological Reality

Now I am going to try to express a bit of nuance, staking out a position somewhere between “race isn’t real” and “Derbyshire is a race traitor.”

In the “race isn’t real” department, we have Sarah Zhang’ Will the Alt-Right Promote a New Kind of Racist Genetics?:

In the genomic age, it is now easy to compare the DNA of people from around the world. And it has indeed revealed that our racial categories are fuzzy proxies for genetic difference—an African man may be more closely related to an Asian than to another African.

From there, Zhang basically tries to argue that race doesn’t real even though genetics and medical science sure make it look real, that the differences in the distribution of genetic traits in large, historically isolated populations don’t matter because of a few tiny populations that are the genetic equivalent of the Basque language.

Kyle Field
Kyle Field, population 102,700

Remember, the world’s entire population of Bushmen wouldn’t even fill the Texas A&M football stadium. Combine them with a few other tiny populations, like the Khoikhoi and Pygmies, and you’re still looking at <1 million people.  Meanwhile, there are billions of Europeans, west Africans, and east Asians.

Mundane racial categories work just fine for the vast majority of people, including the vast majority of Americans, who are not drawn from a rainbow of racially-mixed groups like Tuaregs or fringe outliers like the Bushmen, but from distinct populations of West Africans, Europeans (primarily NW Euros,) Native Americans, and East Asians. If I say someone is “black” or “white,” not only do you understand what I mean, there is an actually consistent genetic reality underlying my statements–in almost 100% of cases, a genetic test would in fact confirm that the people I call “black” are actually primarily Sub-Saharan African by ancestry and the people I call “white” are primarily European by ancestry. Exceptions like Rachel Dolezal are quite rare.

Zhang is trying to argue that you can’t make a reasonable argument about the average distribution of traits between whites, blacks, and Asians in the US because there is a handful of tiny, genetically isolated populations over in Africa. A does not follow from B.

On the other side of the coin, we have people who believe it’s morally imperative to only marry people from one’s own race.

Most of the time, people fall in love with people from their own culture and ethnic group. This is what we’d expect, because you’re more likely to meet and share values with people from your own group. (Interestingly, most people are more genetically similar to their spouses than they are to the average person in their community, not because they married a close relative, but because similar genes make for similar people.)

But some people, for whatever reasons, marrying within their own group isn’t a real option. (White men who are under 5’5″, for example.) These people are looking out for their own best interests–really, if you’re considering calling Derbyshire a race traitor, you’re probably thinking too much about other people’s business.

Capitalism works because it self-corrects; it allows consumers to pick the best products at the best prices, and companies to hire the most talented workers for the best wages. Unlike socialism, where companies are told what and how much to produce, consumers are told what to buy and how much it will cost, and ultimately people starve in the streets, capitalism actually works. Self-interest is a powerful organizing principle that has radically increased the welfare of billions of people over the past century.

And capitalism doesn’t care about race.


Where people live in close proximity to people of other races, some of them will fall in love.

That said, don’t date people for status points or because you’re trying to prove how not-racist you are. Like Obama’s parents, most inter-racial couples don’t stay together; the majority of mixed-race children have parents who are not married–according to one study, 92% of biracial children with black fathers are born out of wedlock and 82% end up on government assistance because their fathers do not bother to take care of them.

picture-6And if you are ever tempted to compare your vagina to the UN because of the sheer number of different ethnicities that have been in it, you need to stop and re-evaluate your life for multiple reasons.


Ultimately, real-life decisions should be based on real-life concerns.

Wed Open Thread: 770,000 genomes and the American Nations

Wow, is it Wednesday already? Time definitely flies when you’re busy.

In interesting news, Politico ran an article with a long (and somewhat misleading) section about Moldbug, and further alleging (based on unnamed “sources” who are probably GodfreyElfwick again*,) that Moldbug is in communication with the Trump Administration:

In one January 2008 post, titled “How I stopped believing in democracy,” he decries the “Georgetownist worldview” of elites like the late diplomat George Kennan. Moldbug’s writings, coming amid the failure of the U.S. state-building project in Iraq, are hard to parse clearly and are open to multiple interpretations, but the author seems aware that his views are provocative. “It’s been a while since I posted anything really controversial and offensive here,” he begins in a July 25, 2007, post explaining why he associates democracy with “war, tyranny, destruction and poverty.”

Moldbug, who does not do interviews and could not be reached for this story, has reportedly opened up a line to the White House, communicating with Bannon and his aides through an intermediary, according to a source. Yarvin said he has never spoken with Bannon.

Vox does a much longer hit piece on Moldbug, just to make sure you understand that they really, truly don’t approve of him, then provides more detail on Moldbug’s denial:

The idea that I’m “communicating” with Steve Bannon through an “intermediary” is preposterous. I have never met Steve Bannon or communicated with him, directly or indirectly. You might as well accuse the Obama administration of being run by a schizophrenic homeless person in Dupont Circle, because he tapes his mimeographed screeds to light poles where Valerie Jarrett can read them.

*In all fairness, there was a comment over on Jim’s Blog to the effect that there is some orthosphere-aligned person in contact with the Trump administration, which may have set off a chain of speculation that ended with someone claiming they had totally legit sources saying Moldbug was in contact with Bannon.

In other news, Han et al have released Clustering of 770,000 genomes reveals post-colonial population structure of North America:

Here we identify very recent fine-scale population structure in North America from a network of over 500 million genetic (identity-by-descent, IBD) connections among 770,000 genotyped individuals of US origin. We detect densely connected clusters within the network and annotate these clusters using a database of over 20 million genealogical records. Recent population patterns captured by IBD clustering include immigrants such as Scandinavians and French Canadians; groups with continental admixture such as Puerto Ricans; settlers such as the Amish and Appalachians who experienced geographic or cultural isolation; and broad historical trends, including reduced north-south gene flow. Our results yield a detailed historical portrait of North America after European settlement and support substantial genetic heterogeneity in the United States beyond that uncovered by previous studies.

Wow! (I am tempted to add “just wow.”) They have created a couple of amazing maps:


Comment of the Week goes to Tim Smithers for his contributions on IQ in Are the Pygmies Retarded:

IQ generally measures the ability to learn, retain information, and make logical decisions and conclusions. It is not about mathematics nor reading, at least in modern testing (since about 1980).
Modern IQ tests typically do not have any math or even reading. Many have no verbiage at all, and there is no knowledge of math required in the least.
For example, a non-verbal, non-math IQ test may have a question that shows arrows pointing in different directions. The test taker must identify which direction would make the most sense for the next arrow to go.
I’m very sorry to disappoint, but I’ve done considerable research into IQ testing over the past decade. The tests have had cultural biases removed (including the assumption that one can read) in order to assess a persons ability to learn, to retain information, and to use common logic. …

You may, of course, RTWT there.

So, how’s it going out there?


Race: The social construction of biological reality, pt 3

Oh man! We are finally at part three! The part in which I attempt incorporating two-D space into our diagram:


Right, so as we turn our car around and head back up the road, we notice an intriguing turnoff in the Congolese rainforest: a tribe of the shortest people in the world, the Pygmies. According to Wikipedia:

A pygmy is a member of an ethnic group whose average height is unusually short; anthropologists define pygmy as a member of any group where adult men are on average less than 150 cm (4 feet 11 inches) tall.[1] A member of a slightly taller group is termed “pygmoid“.[2]

The term is most associated with peoples of Central Africa, such as the Aka, Efé and Mbuti.[3] If the term pygmy is defined as a group’s men having an average height below 1.55 meters (5 feet 1 inch), then there are also pygmies in Australia, Thailand, Malaysia, the Andaman Islands,[4] Indonesia, the Philippines, Papua New Guinea, Bolivia, and Brazil,[5] including some Negritos of Southeast Asia.

Women of the Batwa Pygmies
Women of the Batwa Pygmies

Basically, whenever humans live in tropical rainforests, there’s a good chance they’ll get shorter. (Rainforests also produce pygmy elephants.) Maybe it’s because short people can move more easily through the dense forest, or an adaptation to low levels of iodine, sunlight, or other nutrients–I don’t really know.

Wikipedia estimates that there are between 250,000 and 600,000 pygmies living in the Congo rainforest:

Genetically, the pygmies are extremely divergent from all other human populations, suggesting they have an ancient indigenous lineage. Their uniparental markers represent the most ancient divergent ones right after those typically found in Khoisan peoples. African pygmy populations possess high levels of genetic diversity,[10] recent advances in genetics shed some light on the origins of the various pygmy groups. …

“We studied the branching history of Pygmy hunter–gatherers and agricultural populations from Africa and estimated separation times and gene flow between these populations. The model identified included the early divergence of the ancestors of Pygmy hunter–gatherers and farming populations ~60,000 years ago, followed by a split of the Pygmies’ ancestors into the Western and Eastern Pygmy groups ~20,000 years ago.”

But I recall–was it WestHunt?–objecting that the authors of this paper used a too-fast estimation of genetic mutation rates. Oh here it is:

There are a couple of recent papers on introgression from some quite divergent archaic population into Pygmies ( this also looks to be the case with Bushmen). Among other things, one of those papers discussed the time of the split between African farmers (Bantu) and Pygmies, as determined from whole-genome analysis and the mutation rate. They preferred to use the once-fashionable rate of 2.5 x 10-8 per-site per-generation (based on nothing), instead of the new pedigree-based estimate of about 1.2 x 10-8 (based on sequencing parents and child: new stuff in the kid is mutation). The old fast rate indicates that the split between Neanderthals and modern humans is much more recent than the age of early Neanderthal-looking skeletons, while the new slow rate fits the fossil record – so what’s to like about the fast rate? Thing is, using the slow rate, the split time between Pygmies and Bantu is ~300k years ago – long before any archaeological sign of behavioral modernity (however you define it) and well before the first known fossils of AMH (although that shouldn’t bother anyone, considering the raggedness of the fossil record).

See my review of Isaac Bacirongo and Nest's Still a Pygmy
See my review of Isaac Bacirongo and Michael Nest’s Still a Pygmy

Let’s split the difference and say that one way or another, Pygmies split off from their hunter-gatherer neighbors and became isolated in the rainforest quite a while ago.

Before we drive on, I’d like to pause and note that I’m not entirely comfortable with using the way Pygmies are sometimes used in racial discussions. Yes, they are short, but they otherwise look a lot like everyone else in the area. Pygmies go to school, often speak multiple languages, live in cities, work at real jobs, read books, operate businesses, drive cars, fall in love, get married, build houses, etc. For more on Pygmies see my review of Isaac Bacirongo’s memoir Still a Pygmy (Isaac is a Pygmy man who speaks, IIRC, 5 languagues, attended highschool, and owned/ran successful pharmacies in two different cities in the DRC before the army burned them down during a civil war.)

Now I admit that Isaac is just one guy and I don’t know what the rest of the Pygmies are like.

People over-thought ancestry long before 23 and Me
Different classes of Mexican mestizos: people over-thought ancestry long before 23 and Me

But let’s hop back in our car, for at the other end of this road we have not a small town of isolated forest-dwellers, but a large group we have so far neglected: the Native Americans.

The indigenous peoples of North and South America today number about 60 million people, plus some quantity of mixed-race people (mestizos.) In some areas these mestizos are majority European by ancestry; in others they are majority Indian; studies in Mexico, for example, estimate that 80-93% of the population is Mestizo, with Indian ancestry averaging between 31% and 66% in different regions. The people of El Salvador are about 86% mestizo; Chileans are about 40% Indian and 60% Europeans; Columbia is about 49% mestizo; etc.

Unfortunately, Wikipedia doesn’t list the total number of mestizos, and I don’t have time to calculate it, but I will note that the total population of both continents, including Canada and the USA, is about 1 billion people.

map of gene-flow in and out of Beringia, from 25,000 years ago to present
map of gene-flow in and out of Beringia, from 25,000 years ago to present

We’re not sure exactly when (or how) the Indians got here, but it looks like they arrived around 10-20,000 years ago across the then-Bering Landbridge. (I think we should also keep in mind the possibility that they could have built boats.) According to Wikipedia:

Scientific evidence links indigenous Americans to Asian peoples, specifically Siberian populations, such as the Ket, Selkup, Chukchi and Koryak peoples. Indigenous peoples of the Americas have been linked to North Asian populations by the distribution of blood types, and in genetic composition as reflected by molecular data, such as DNA.[192] There is general agreement among anthropologists that the source populations for the migration into the Americas originated from an area somewhere east of the Yenisei River. The common occurrence of the mtDNA Haplogroups A, B, C, and D among eastern Asian and Native American populations has long been recognized.[193] As a whole, the greatest frequency of the four Native American associated haplogroups occurs in the AltaiBaikal region of southern Siberia.[194] Some subclades of C and D closer to the Native American subclades occur among Mongolian, Amur, Japanese, Korean, and Ainu populations.[193][195]

Genetic studies of mitochondrial DNA (mtDNA) of Amerindians and some Siberian and Central Asian peoples also revealed that the gene pool of the Turkic-speaking peoples of Siberia such as Altaians, Khakas, Shors and Soyots, living between the Altai and Lake Baikal along the Sayan mountains, are genetically close to Amerindians.[citation needed] This view is shared by other researchers who argue that “the ancestors of the American Indians were the first to separate from the great Asian population in the Middle Paleolithic.”[196][197] 2012 research found evidence for a recent common ancestry between Native Americans and indigenous Altaians based on mitochondrial DNA and Y-Chromosome analysis.[198] The paternal lineages of Altaians mostly belong to the subclades of haplogroup P-M45 (xR1a 38-93%;[199][200][201] xQ1a 4-32%[199][200]).

Hilaria Supa, Indigenous Peruvian Congresswoman
Hilaria Supa, Indigenous Peruvian Congresswoman

These ancient Siberians also had some “European” DNA, as do modern Siberians, but they are most closely related to their neighbors to the south, throughout the rest of Asia. Native American DNA is super fascinating, but we don’t have time to get into it all. On the grand scale, Native Americans are genetically Asians, separated from the rest of the clade by (probably) a mere 13-20,000 years. (Somewhat coincidentally, the Dire wolf, Smilodon, giant beaver, ground sloth, giant Columbian mammoth (Mammuthus columbi), woolly mammoth, mastodons, giant short-faced bear, American cheetah, scimitar cats (Homotherium), American camels, American horses, and American lions all went extinct in North America around 12,000 years ago.)

On the grand scale of human history, (200,000 years, more or less,) 13-20,000 years is not very long, and the Native Americans have not diverged too much, physically, from their cousins in Asia. The G-allele mutation of the EDAR gene arose about 30,000 years ago somewhere in east Asia and gives both modern Asians and Native Americans (but not Europeans and Africans) their characteristic hair and skin tone. While Native Americans are clearly physically, culturally, and geographically distinct from other Asians, (just as Europeans and south-Asian Indians are distinct from each other,) they are genetically close enough that they unquestionably clade together in the greater racial schema.

Also credit Robert Lindsay
Also credit Robert Lindsay

As I’ve said before, my diagram is just one way to represent one aspect of the genetic (and physical) distances between people.

Here is another diagram, not mine, which tells the same story in a different way (though it estimates a much lower genetic distance between Bushmen and Bantus than I’d expect. Oh well. different studies get different results; that’s why replication and meta-analysis are super important):

The Melanesians of Papua New Guinea and Australia are in pink (there are some mixed Melanesian / Polynesian populations in the world, but our road trip skipped them.) Their nearest relatives are other south Asians and Polynesians, but those same south Asians are themselves more closely related to Europeans than Australians. Diagrammed like this, it’d be understandable to break off south Asians into one race and put Caucasians, Native Americans, and East Asians into a single race. And I suppose you could, if you wanted to and could get everyone else to start using your categories. Race is biologically real and quite obvious at the macro scale, but a few small groups like Aborigines and Bushmen introduce existential uncertainty that intellectuals can quibble over.I don’t think it would be terribly useful rearrangement, though, for all of the reasons discussed over the past three posts in this series.

Well, that’s the end of our big road trip! I hope you’ve enjoyed it, and that it’s cleared up that nagging question people seem to have: How can Nigerians be more closely related to Europeans than some other Africans? Have a great day, and enjoy the drive home.

Race: The Social Construction of a Biological Reality, pt 2

Note: This post still contains a lot of oversimplification for the sake of explaining a few things.

Welcome back to our discussion of the geographic dispersion of humanity. On Tuesday, we discussed how two great barriers–the Sahara desert and the Himalayas + central Asian desert–have impeded human travelers over the millennia, resulting in three large, fairly well-defined groups of humans, the major races: Sub-Saharan Africans (SSA), Caucasians, and east Asians.

Of course, any astute motorist, having come to a halt at the Asian end of our highway, might observe that there is, in fact, a great deal of land in the world that we have not yet explored. So we head to the local shop and pick up a better map:


Our new map shows us navigational directions for getting to Melanesia and Australia–in ice age times, it instructs us, we can drive most of the way. If there isn’t an ice age, we’ll have to take a boat.

900px-oceania_un_geoscheme_-_map_of_melanesia-svgThe people of Melanesia and Australia are related, the descendants of one of the first groups of humans to split off from the greater tribe that left Africa some 70k ago.

As the name “Melanesian” implies, they are quite dark-skinned–a result of never having ventured far from the equatorial zone.

Today, they live in eastern Indonesia, Papua New Guinea, Australia, and a smattering of smaller islands. (Notably, the Maori of New Zealand are Polynesians like the Hawaiians, not Melanesians, descendants of a different migration wave that originated in Taiwan.)

Fijian mountain warrior
Fijian mountain warrior with curly, “African” style hair

There is some speculation that they might have once been wider-spread than they currently are, or that various south-Asian tribes might be related to them, (eg, “A 2009 genetic study in India found similarities among Indian archaic populations and Aboriginal people, indicating a Southern migration route, with expanding populations from Southeast Asia migrating to Indonesia and Australia,”) but I don’t think any mainland group would today be classed as majority Melanesian by DNA.

They may also be related to the scattered tribes of similarly dark-skinned, diminutive people known as the Negritos:

Males from the Aeta people (or Agta) people of The Philippines, are of great interest to genetic, anthropological and historical researchers, as at least 83% of them belong to haplogroup K2b, in the form of its rare primary clades K2b1* and P* (a.k.a. K2b2* or P-P295*).[7] Most Aeta males (60%) carry K-P397 (K2b1), which is otherwise uncommon in the Philippines and is strongly associated with the indigenous peoples of Melanesia and Micronesia. Basal P* is rare outside the Aeta and some other groups within Maritime South East Asia. …

Naural blond hair
Two Melanesian girls from Vanatu (blond hair is common in Melanesian children.)

A 2010 study by the Anthropological Survey of India and the Texas-based Southwest Foundation for Biomedical Research identified seven genomes from 26 isolated “relic tribes” from the Indian mainland, such as the Baiga, which share “two synonymous polymorphisms with the M42 haplogroup, which is specific to Australian Aborigines“. These were specific mtDNA mutations that are shared exclusively by Australian aborigines and these Indian tribes, and no other known human groupings.[12]

A study of blood groups and proteins in the 1950s suggested that the Andamanese were more closely related to Oceanic peoples than African Pygmies. Genetic studies on Philippine Negritos, based on polymorphic blood enzymes and antigens, showed they were similar to surrounding Asian populations.[13]

Negrito peoples may descend from Australoid Melanesian settlers of Southeast Asia. Despite being isolated, the different peoples do share genetic similarities with their neighboring populations.[13][14] They also show relevant phenotypic (anatomic) variations which require explanation.[14]

In contrast, a recent genetic study found that unlike other early groups in Malesia, Andamanese Negritos lack the Denisovan hominin admixture in their DNA. Denisovan ancestry is found among indigenous Melanesian and Australian populations between 4–6%.[15][16]

Australian Aboriginal man
Australian Aboriginal man

However, the Negritos are a very small set of tribes, and I am not confident that they are even significantly related to each other, rather than just some short folks living on a few scattered islands. We must leave them for another day.

The vast majority of Aborigines and Melanesians live in Australia, Papua New Guinea, and nearby islands. They resemble Africans, because they split off from the rest of the out-of-Africa crew long before the traits we now associate with “whites” and “Asians” evolved, and have since stayed near the equator, but they are most closely related to–sharing DNA with–south Asians (and Indians.)

So we have, here, on the genetic level, a funny situation. Melanesians are–relatively speaking–a small group. According to Wikipedia, thee are about 12 million Melanesians and 606,000 Aborigines. By contrast, Tokyo prefecture has 13 million people and the total Tokyo metro area has nearly 38 million. Meanwhile, the Han Chinese–not a race but a single, fairly homogenous ethnic group–number around 1.3 billion.

Of all the world’s peoples, Melanesians/Aborigines are most closely related to other Asians–but this is a distant relationship, and those same Asians are more closely related to Caucasians than to Aborigines.

As I mentioned on Tuesday, the diagram, because it is 1-dimensional, can only show the distance between two groups at a time, not all groups. The genetic distance between Caucasians and Aborigines is about 60 or 50k, while the distance between Asians and Caucasians is around 40k, but the distance between Sub-Saharan Africans and ALL non-SSAs is about 70k, whether they’re in Australia, Patagonia, or France. Our map is not designed to show this distance, only the distances between individual pairs.

Some anthropologists refer to Bushmen as "gracile," which means they are a little shorter than average Europeans and not stockily built
Some anthropologists refer to Bushmen as “gracile,” which means they are a little shorter than average Europeans and not stockily built

Now if we hopped back in our car and zoomed back to the beginning of our trip, pausing to refuel in Lagos, we’d note another small group that has been added to the other end of the map: the Bushmen, aka the Khoi-San people. Wikipedia estimates 90,000 San and doesn’t give an estimate for the Khoi people, but their largest group, the Nama, has about 200,000 people. We’ll estimate the total, therefore, around 500,000 people, just to be safe.

The Bushmen are famous for being among the world’s last hunter-gatherers; their cousins the Khoi people are pastoralists. There were undoubtedly more of them in the past, before both Europeans and Bantus arrived in southern Africa. Some people think Bushmen look a little Asian, due to their lighter complexions than their more equatorial African cousins.


Various Y chromosome studies show that the San carry some of the most divergent (oldest) human Y-chromosome haplogroups. These haplogroups are specific sub-groups of haplogroups A and B, the two earliest branches on the human Y-chromosome tree.[48][49][50]

Mitochondrial DNA studies also provide evidence that the San carry high frequencies of the earliest haplogroup branches in the human mitochondrial DNA tree. This DNA is inherited only from one’s mother. The most divergent (oldest) mitochondrial haplogroup, L0d, has been identified at its highest frequencies in the southern African San groups.[48][51][52][53]

I loved that movie
The late Nǃxau ǂToma, (aka Gcao Tekene Coma,) Bushman star of “The Gods Must be Crazy,” roughly 1944-2003

In a study published in March 2011, Brenna Henn and colleagues found that the ǂKhomani San, as well as the Sandawe and Hadza peoples of Tanzania, were the most genetically diverse of any living humans studied. This high degree of genetic diversity hints at the origin of anatomically modern humans.[54][55]

Recent analysis suggests that the San may have been isolated from other original ancestral groups for as much as 100,000 years and later rejoined, re-integrating the human gene pool.[56]

A DNA study of fully sequenced genomes, published in September 2016, showed that the ancestors of today’s San hunter-gatherers began to diverge from other human populations in Africa about 200,000 years ago and were fully isolated by 100,000 years ago … [57]

So the total distance between Nigerians and Australian Aborogines is 70k years; the distance between Nigerians and Bushmen is at least 100k years.

When we zoom in on the big three–Sub-Saharan Africans, Caucasians, and Asians–they clade quite easily and obviously into three races. But when we add Aborigines and Bushmen, things complicate. Should we have a “race” smaller than the average American city? Or should we just lump them in with their nearest neighbors–Bushmen with Bantus and Aborigines with Asians?

I am fine with doing both, actually–but wait, I’m not done complicating matters! Tune in on Monday for more.