Finnish DNA

Distribution of the Finno-Ugric languages

In honor family, Thanksgiving, and the discovery that my husband is about as Finnish as Elisabeth Warren is Cherokee, today’s post is on Finnish DNA. (No, I did not just “finish” the field of genetics.)

Finland is one of the few European countries that doesn’t speak an Indo-European language. (Well, technically a lot of them speak Swedish, but obviously that’s because of their long contact with Sweden.) Both Finnish and the Sami language hail from the appropriately named Finno-Ugric family, itself a branch of the larger Uralic family, which spreads across the northern edge of Asia.

While there is one cave that might have housed pre-ice age people in Finland, solid evidence of human occupation doesn’t start until about 9,000 BC (11,000 YA), when the ice sheets retreated. These early Finns were hunter-gatherers (and fishers–one of the world’s oldest fishing nets, from 8300 BC, was found in Finland). For a thousand years or so Baltic Sea was more of a Baltic Lake (called Ancylus Lake), due to some complex geologic processes involving uplift in Sweden that we don’t need to explore, but it seems the lake had some pretty good fishing.

Pottery shows up around 5300 BC, with the “Comb Ceramic Culture” or “Pit-Comb Ware.” According to Wikipedia:

The distribution of the artifacts found includes Finnmark (Norway) in the north, the Kalix River (Sweden) and the Gulf of Bothnia (Finland) in the west and the Vistula River (Poland) in the south. In the east the Comb Ceramic pottery of northern Eurasia extends beyond the Ural mountains to the Baraba steppe adjacent to the Altai-Sayan mountain range, merging with a continuum of similar ceramic styles.[1]

Comb Ceramic was not limited in Europe, being widely distributed in the BalticFinland, the Volga upstream flow, south SiberiaLake BaikalMongolian Plateau, the Liaodong Peninsula and the Korean Peninsula.[2] The oldest ones have been discovered from the remains of Liao civilization – Xinglongwa culture (6200 BC – 5400 BC).[3]

The Xinglongwa are from northern China/inner Mongolia.

This distribution is a pretty decent match to the distribution of Finno-Ugric and Uralic languages before the march of Indo-European (Hungarian arrived in Hungary well after the IE invasion), so it’s pretty decent evidence that the language and pottery went together. Pottery usually indicates the arrival of agricultural peoples (who need pots to store things in,) but in this case, the Comb Ceramic people were primarily nomadic hunter-gatherers/fishers/herders, much like modern people in the far north.

While I usually assume that the arrival of a new toolkit heralds the arrival of a new group of people, the general lifestyle continuity between hunter-gatherers with baskets and hunter-gatherers with pots suggests that they could have been the same people. DNA or more information about their overall cultures would tell the story with more certainty.

Oddly, one variety of pit-comb ware is known as “asbestos ware”, because the locals incorporated asbestos into their pots. The point of asbestos pots, aside from aesthetics (the fibers could make large, thin-walled vessels,) was probably to accommodate the high temperatures needed for metal working.

The Corded Ware people–aka the Yamnaya aka Indo Europeans–showed up around 3,000 BC. They seem to have brought agriculture with them, though Mesopotamian grains didn’t take terribly well to the Finnish weather.

Bronze arrived around 2,000 BC (or perhaps a little later), having spread from the Altai mountains–a route similar to the earlier spread of Comb Ware pottery. (Wikipedia speculates that these bronze artifacts mark the arrival of the Finno-Ugric languages.) Iron arrived around 500 BC.

Since Finland is a difficult place to raise crops, people have gone back and forth between agriculture, hunting, fishing, herding, gathering, etc over the years. For example, around 200 BC, the “hair temperature” pottery disappeared as people transitioned away from agriculture, to a more nomadic, reindeer-herding lifestyle.

Anyway, let’s take a look at the genetics:

A new genetic study carried out at the University of Helsinki and the University of Turku demonstrates that, at the end of the Iron Age, Finland was inhabited by separate and differing populations, all of them influencing the gene pool of modern Finns.

(Gotta love how Science Daily Trumps this as “diverse origins”)

The authors, Oversti et al, actually title their paper “Human mitochondrial DNA lineages in Iron-Age Fennoscandia suggest incipient admixture and eastern introduction of farming-related maternal ancestry” :

Here we report 103 complete ancient mitochondrial genomes from human remains dated to AD 300–1800, and explore mtDNA diversity associated with hunter-gatherers and Neolithic farmers. The results indicate largely unadmixed mtDNA pools of differing ancestries from Iron-Age on, suggesting a rather late genetic shift from hunter-gatherers towards farmers in North-East Europe. …

… aDNA has recently been recovered from c. 1500 year-old bones from Levänluhta in western central Finland18,19. Genomic data from these samples show a Siberian ancestry component still prominently present today, particularly in the indigenous Saami people, and to a lesser extent in modern Finns.

The authors have an interesting observation about a line running through Finland:

Within Finland, an unusually strong genetic border bisects the population along a northwest to southeast axis24,26,27, and is interpreted to reflect an ancient boundary between hunter-gatherer and farmer populations28. The expanse of agriculture north-east of this border was probably limited by environmental factors, especially the length of the growing season.

I thought this part was really neat:

A total of 95 unique complete-mitogenome haplotypes were observed among the 103 complete sequences retrieved: three haplotypes were shared between sampling sites and five within a site. In the latter cases, the placement of the skeletal samples suggests that the shared haplotypes have been carried by different individuals, who may have been maternally related: identical haplotypes (haplogroup U5a2a1e) were obtained from remains of a c. 5-year-old child (grave 18, TU666) and an older woman (grave 7, TU655) from Hollola.

Obviously the death of a child is not neat, but that we can identify relatives in an ancient graveyard is. I have relatives who are all buried near each other, and if some future archaeologist dug them up and realized “Oh, hey, here we have a family,” I think that’d be nice.

The authors discovered something interesting about the direction of the introduction of agriculture.

If you look at a map of Finland, you might guess that agriculture came from the south west, because those are the areas where agriculture is practiced in modern Finland. You’d certainly be correct about the south, but it looks like agriculture was actually introduced from the east–it seems these early farmers didn’t fare well in eastern Finland, and eventually migrated to the west. Alternatively, they may have just failed/given up, and more farmers arrived later from the west and succeeded–but if so, they were related to the first group of farmers.

Overall, the authors found evidence of three different groups in the ancient graveyards: at the oldest site, a Saami-like population (found further south that modern Saami populations); a non-Saami group of hunter gatherers, and Neolithic farmers.

The non-Saami hunter gatherers had high rates of haplogroup U4, which is rare in modern Finns (Saami included). According to the article:

Instead, in contemporary populations, U4 exists in high frequencies in Volga-Ural region (up to 24% in Komi-Zyryans)36 and with lower frequencies around the Baltic Sea, such as in Latvians and Tver Karelians (both around 8%)37. Taking into account that U4 have been prevalent in neighboring areas among Scandinavian10,39,40,41,42,43 and Baltic hunter-gatherers12,13,44, Baltic Comb Ceramics Culture12,13,14 and in Siberia during the Early metal period11, we might be observing ancestries belonging to an earlier layer of ancient inhabitants of the region.

Anyway, it’s an interesting article, so if you’re interested in Finland or polar peoples generally, I hope you give it a read.

Happy Thanksgiving!

Finnis, Saami, and Fennoscandian DNA


Distribution of the Finno-Ugric languages

I’ve long wondered which group arrived first in Europe: the Indo-Europeans or the Finno-Ugrics. Most Europeans speak one of the hundreds of languages in the Indo-European family tree, but a few groups speak languages from the mostly Siberian Finno-Ugric branch of the Uralic family.

(Sorry, guys, I’m out of practice writing and these sentences don’t sound good to me, but the only way to improve is to forge ahead, so let’s go.)

Major countries/ethnic groups that speak Finno-Ugric languages include the Finns (obviously,) Saami/Lapps, Hungarians, and Estonians. The most southerly of this family, Hungarian, arrived in the Carpathian Basin within the span of recorded History (in 894 or 895, followed by a few years of warfare to secure their territory,) but the origins of the other European Finno-Ugric languages remains mysterious.

Who arrived first, the Indo Europeans or the Finns? Did the Saami always live in their current homelands, or did they once range much further south or east? Did they migrate here recently or long ago (since the entire area was under ice sheets during the ice age, no one lived there tens of thousands of years ago.)

With the exception of Hungarian, these languages all hail from the far north (especially if you include the Samoyidic languages, which hail from north of Komi on the map,) a cold and forbidding land where herding, hunting, gathering, and fishing have remained the primary way of life until quite recently–the long winters making agriculture very difficult.

Lamnidis et al have a new paper out on Ancient Fennoscandian DNA that sheds a fascinating light on the subject:

Here we analyse ancient genomic data from 11 individuals from Finland and north-western Russia. We show that the genetic makeup of northern Europe was shaped by migrations from Siberia that began at least 3500 years ago. This Siberian ancestry was subsequently admixed into many modern populations in the region, particularly into populations speaking Uralic languages today. Additionally, we show that ancestors of modern Saami inhabited a larger territory during the Iron Age, which adds to the historical and linguistic information about the population history of Finland.

41467_2018_7483_fig1_htmlLet’s cut to the pictures, because they are worth a thousand words:

Just in case you are unclear on the geography, the Modern Saami come from northern part of the Finnoscandian peninsula. Six of the ancient remains came from Bolshoy Oleni Ostrov in the Murmansk Region on the Kola Peninsula–that’s the topmost dot on the map, now in Russia. These remains are very old–dated to about 1610-1436 BC.

Seven remains came from Levänluhta in Isokyrö, Finland, from a more recent burial dated to around 300-800 AD. (Actually, I think Levanluhta is a lake, so  This is the most southwestern burial on the map, in an area where the modern Finns live.

And the remains of two people came from a much more recent Saami cemetery in the Kola peninsula, Chalmny Varre, dating from the 17 or 1800s.

All of this DNA was compared against a variety of reference populations:


(I would just like to pause for a moment to appreciate both the beauty and hard work that went into these graphs.)

PC2 graphs are a little complicated, but what we’re basically looking at (in color) are two different human population axes. They very roughly correlate to north-south (up and down) and east-west, (left to right), because people tend to be more closely related to their neighbors than people thousands of miles away, but there’s another, more fascinating story going on here.

On the right-hand side, we have a cline that maps very nicely to north and south, from the Yukagir–a people from a part of Russia that’s so far to the northeast it’s almost in Alaska–at the top and the Semende of Indonesia and the Atayal, an indigenous Taiwanese group, at the bottom. (Most Taiwanese you meet are either newly arrived Han Chinese or older Han Chinese; the aboriginal Taiwanese are different, but likely the ancestors of Polynesians.)

DNA from various Asian peoples

Most east Asian DNA shows up as a blend of these two groups (which we may call roughly polar and tropical). In the chart to the right, taken from Haak et al, the polar DNA is red and the tropical is yellow. So the up-down cline on the right side of the map represents which particular mix of Polar/Tropical DNA these folks have.

On the left side of the graph, we have a farming/hunter-gatherer cline. The first farmers hailed from Anatolia (now Turkey, but that was before the Turks moved to Turkey,) and subsequently spread/conquered most of Europe and probably a few other places, because agriculture was quite successful. So the orange is Middle Easterners; above them are southern Europeans like Albanians and Basques; then the English, French, Hungarians, Finns, etc; and finally some older burials of people with descriptive names like “Eastern Hunter-Gatherer” [EHG] or “Scandinavian Hunter-gatherers” [SHG].

(I have to constantly remind myself what these little abbreviations mean, but The Genetic Prehistory of the Baltic Region probably clears things up a bit:

Similarly, in the Eastern Baltic, where foraging continued to be the main form of subsistence until at least 4000 calBCE15, ceramics technology was adopted before agriculture, as seen in the Narva Culture and Combed Ceramic Culture (CCC). Recent genome-wide data of Baltic pottery-producing hunter-gatherers revealed genetic continuity with the preceding Mesolithic inhabitants of the same region as well as influence from the more northern EHG21,22, but did not reveal conclusively whether there was a temporal, geographical or cultural correlation with the affinity to either WHG or EHG.

The transition from the Late (Final) Neolithic to the Early Bronze Age (LNBA) is seen as a major transformative period in European prehistory, accompanied by changes in burial customs, technology and mode of subsistence as well as the creation of new cross-continental networks of contact seen in the emergence of the pan-European Corded Ware Complex (CWC, ca. 2900–2300 calBCE) in Central2 and north-eastern Europe21.

If you remember your Guns, Germs, and Steel, Turkish farmers had a really hard time getting their wheat to grow up in really cold places like Northern Russia,  Scandinavia and Narva (near the border between Estonia and Russia on the Baltic Sea,) which is why modern Finland is super poor and Turkey and Mexico, where corn was domesticated, are rich–what it doesn’t quite work like that?



So most Europeans today are a mix of Anatolian farmers and various European hunter gatherer groups, with exactly how much you got depending a lot on whether the local environment was hospitable to farming. The pure hunter-gatherer genomes therefore show up as “further north” than the mixed, modern genomes of modern French and British folks.

There were additional events besides the Anatolian conquest that shaped modern European genetics–mostly the aforementioned Indo-European conquest–but the Indo-Europeans were at least part hunter-gatherer by DNA (nomadic pastoralists by profession,) so on this scale, their contributions look a lot like the older hunter-gatherer DNA.

So the interesting part of the graph is the middle, where all of the central Eurasian peoples are plotted. The purple band is various Finno-Ugric/Uralic speakers.

Hungarians are solidly in Europe because the ancient conquering Magyars left behind their language, but not much of their DNA (as we’ve discussed previously.) The Nganasan are one of the most thoroughly Siberian peoples you can imagine; they historically survived by hunting reindeer.

The green swaths (light and dark teal) are mostly Turkic-language speaking peoples; the Turkic peoples originated near Mongolia/Korea and spread out from there, mostly absorbing the DNA of whomever they encountered and passing on their language. The authors have also included Mongolian (which is not in the Turkic language family) in the light green group and some Caucuses groups in the dark teal.

Interestingly, the Yukaghir language (far upper right) is (according to Wikipedia,) potentially in the greater Finno-Ugric/Uralic family:

The relationship of the Yukaghir languages with other language families is uncertain, though it has been suggested that they are distantly related to the Uralic languages, thus forming the putative Uralic–Yukaghir language family.[5]

Based on the genetics, I’d say it looks very likely that the ancestors of Uralic-speaking Nganasan and the Yukagirs were conversing in some sort of mutually intelligible language. Unfortunately, Yukaghir has very few speakers and is likely to die, so there’s not much time to research it.

Finally in the Light Teal we have some groups from Pakistan/Afghanistan, like the Balochi.

(Note that all of the colors used in these studies are arbitrary; DNA doesn’t really have a color.)

So where do our ancient DNA remains fall on this graph?

Today, the Levanluhta site is in Finland, surrounded solidly by Finns (and maybe some random Scandinavians; who knows;) in 300-800 AD, the population was almost identical to modern Saami. So even though Saami and Finns both speak Finno-Ugric languages, the Finns replaces the Saami in this area sometime in the past 1,500 years or so.

One Levanlughta skeleton is an exception–the one marked Levanlughta_B; it is clearly closer to the Finns and English on this graph, but deeper mathematical analysis disputes this conclusion:

One of the individuals from Levänluhta (JK2065/Levänluhta_B) rejects a cladal position with modern Saami to the exclusion of most modern Eurasian populations. This individual also rejects a cladal position with Finns. We analysed low coverage genomes from four additional individuals of the Levänluhta site using PCA (Supplementary Figure 3), confirming the exclusive position of Levänluhta_B compared to all other six individuals (including the four low-coverage individuals) from that site, as is consistent with the ADMIXTURE and qpAdm results. The outlier position of this individual cannot be explained by modern contamination, since it passed several tests for authentication (see Methods) along with all other ancient individuals. However, no direct dating was available for the Levänluhta material, and we cannot exclude the possibility of a temporal gap between this individual and the other individuals from that site.

In other words, it is a mystery.

The remains from Chalmny Varre, which we know was a Saami cemetery, unsurprisingly cluster with the other Saami.

The Bolshoy remains, though, are quite interesting. They are shifted slightly in the direction of the ancient hunter-gatherers (perhaps their descendants, if still around, have mixed a bit with the agriculturalists.) Their physical location is about as far east as the Red Squares (ethnic Russians,) yet the more closely resemble the Mansi or the Selkups. (The modern Mansi live here; the modern Selkups live nearby.)

Getting down to the bar graphs, we see this data presented in a different way.

There are three groups that we can see contributing to most modern Europeans–Farmers, represented by the Orange LBK DNA; exclusively Indo-European, Green, notably not found in the Basque; and hunter-gatherers in Dark Blue. (Note that the ancestors of the Indo-Europeans hailed from the Central Eurasian steppes and so their DNA could have gotten around there, too.)

The modern Saami also have a Purple component to their DNA, which finds its highest expression in the Nganasan of far eastern polar Russia.

So the oldest burials–the Bolshoy–show no agricultural DNA. They are hunter-gatherers+Siberians, with a touch of Indo-European (probably from a steppe population that might have contributed to the Indos as well) and a bit they share with… the Karitiana of Brazil? Well, the Native Americans did descend from Paleo Siberians, so some genetic relatedness is expected.

The more recent burials, which cluster with the modern Saami, all show agricultural DNA–probably due to marrying a few of the local Finns/Russians who carry some agricultural DNA (who are almost genetically identical on this scale) rather than a pure LBK agriculturalist.

Here we see why the one outlier, Levanlughta_B, doens’t group with the Finns, either–modern Finns and Russians have some of that Nganasan-style Siberian DNA (probably from the same process that gifted Finnish/Russian DNA to the Saami), but Levanlughta_B doesn’t. Levanlughta_B looks more like the Baltic BA sample (Baltic Bronze Age.) Perhaps this individual was just a merchant, traveler, or lost–or represents a stage before the modern Finnish population had been produced.

The Finnish population itself is interesting, because it is genetically very similar to the Russian, but obviously speaks a language far more closely related to Saami (Lapp) than anything in the Indo-European tree. While it is therefore likely that the Finns replaced the Saami in the area around Lake Levanlughta, it seems also probable that in the process, they absorbed a large number of Uralic-speaking people. Who conquered (or married) whom? Did an ancient Balto-Slavic population move into what is now Finland, marry the local Saami girls, and adopt their language? Did an ancient Siberian population speaking a Uralic language conquer some ancient group of Russians, take their women, pass on their Uralic language, and later move into Finland and drive out the locals? Or perhaps something even more complicated occurred.

As for the Bolshoy, are they related (closely) to the modern Saami, or are they a group that simply died out?

The paper goes on:

 While the Siberian genetic component presented here [Purple] has been previously described in modern-day populations from the region1,3,9,10, we gain further insights into its temporal depth. Our data suggest that this fourth genetic component found in modern-day north-eastern Europeans arrived in the area before 3500 yBP. It was introduced in the population ancestral to Bolshoy Oleni Ostrov individuals 4000 years ago at latest, as illustrated by ALDER dating using the ancient genome-wide data from the Bolshoy samples. The upper bound for the introduction of this component is harder to estimate. The component is absent in the Karelian hunter-gatherers (EHG)3 dated to 8300–7200 yBP as well as Mesolithic and Neolithic populations from the Baltics from 8300 yBP and 7100–5000 yBP respectively8

Karelia is a region that crosses the border between Finland and Russia, so it is significant that this Siberian component isn’t found in ancient Karelian hunter-gatherers. Of course, the Siberians could have just been further north, however, the authors note that we have archaeological evidence of the spread of the Bolshoy people:

The large Nganasan-related component in the Bolshoy individuals from the Kola Peninsula provides the earliest direct genetic evidence for an eastern migration into this region. Such contact is well documented in archaeology, with the introduction of asbestos-mixed Lovozero ceramics during the second millennium BC50, and the spread of even-based arrowheads in Lapland from 1900 BCE51,52. Additionally, the nearest counterparts of Vardøy ceramics, appearing in the area around 1,600-1,300 BCE, can be found on the Taymyr peninsula, much further to the East51,52. Finally, the Imiyakhtakhskaya culture from Yakutia spread to the Kola Peninsula during the same period24,53. Contacts between Siberia and Europe are also recognised in linguistics. The fact that the Nganasan-related genetic component is consistently shared among Uralic-speaking populations, with the exceptions of absence in Hungarians and presence in the non-Uralic speaking Russians, makes it tempting to equate this genetic component with the spread of Uralic languages in the area.

The authors qualify this with a bit of “it’s complicated; people move around a lot,” but basically it’s People: not pots.

That was an enjoyable read; I look forward to the next paper from these folks.

Navigation and the Wealth of Nations

Global Determinants of Navigational Ability, by Coutrot et al:

Using a mobile-based virtual reality navigation task, we measured spatial navigation ability in more than 2.5 million people globally. Using a clustering approach, we find that navigation ability is not smoothly distributed globally but clustered into five distinct yet geographically related groups of countries. Furthermore, the economic wealth of a nation (Gross Domestic Product per capita) was predictive of the average navigation ability of its inhabitants and gender inequality (Gender Gap Index) was predictive of the size of performance difference between males and females. Thus, cognitive abilities, at least for spatial navigation, are clustered according to economic wealth and gender inequalities globally.

This is an incredible study. They got 2.5 million people from all over the world to participate.

If you’ve been following any of the myriad debates about intelligence, IQ, and education, you’re probably familiar with the concept of “multiple intelligences” and the fact that there’s rather little evidence that people actually have “different intelligences” that operate separately from each other. In general, it looks like people who have brains that are good at working out how to do one kind of task tend to be good at working out other sorts of tasks.

I’ve long held navigational ability as a possible exception to this: perhaps people in, say, Polynesian societies depended historically far more on navigational abilities than the rest of us, even though math and literacy were nearly absent.

Unfortunately, it doesn’t look like the authors got enough samples from Polynesia to include it in the study, but they did get data from Indonesia and the Philippines, which I’ll return to in a moment.

Frankly, I don’t see what the authors mean by “five distinct yet geographically related groups of countries.” South Korea is ranked between the UK and Belgium; Russia is next to Malaysia; Indonesia is next to Portugal and Hungary.

GDP per capita appears to be a stronger predictor than geography:

Some people will say these results merely reflect experience playing video games–people in wealthier countries have probably spent more time and money on computers and games. But assuming that the people who are participating in the study in the first place are people who have access to smartphones, computers, video games, etc., the results are not good for the multiple-intelligences hypothesis.

In the GDP per Capita vs. Conditional Modes (ie how well a nation scored overall, with low scores better than high scores) graph, countries above the trend line are under-performing relative to their GDPs, and countries below the line are over-performing relative to their GDPs.

South Africa, for example, significantly over-performs relative to its GDP, probably due to sampling bias: white South Africans with smartphones and computers were probably more likely to participate in the study than the nation’s 90% black population, but the GDP reflects the entire population. Finland and New Zealand are also under-performing economically, perhaps because Finland is really cold and NZ is isolated.

On the other side of the line, the UAE, Saudi Arabia, and Greece over-perform relative to GDP. Two of these are oil states that would be much poorer if not for geographic chance, and as far as I can tell, the whole Greek economy is being propped up by German loans. (There is also evidence that Greek IQ is falling, though this may be a near universal problem in developed nations.)

Three other nations stand out in the “scoring better than GDP predicts” category: Ukraine, (which suffered under Communism–Communism seems to do bad things to countries,) Indonesia and the Philippines. While we could be looking at selection bias similar to South Africa, these are island nations in which navigational ability surely had some historical effect on people’s ability to survive.

Indonesia and the Philippines still didn’t do as well as first-world nations like Norway and Canada, but they outperformed other nations with similar GDPs like Egypt, India, and Macedonia. This is the best evidence I know of for independent selection for navigational ability in some populations.

The study’s other interesting findings were that women performed consistently worse than men, both across countries and age groups (except for the post-90 cohort, but that might just be an error in the data.) Navigational ability declines steeply for everyone post-23 years old until about 75 years; the authors suggest the subsequent increase in abilities post-70s might be sampling error due to old people who are good at video games being disproportionately likely to seek out video game related challenges.

The authors note that people who drive more (eg, the US and Canada) might do better on navigational tasks than people who use public transportation more (eg, Europeans) but also that Finno-Scandians are among the world’s best navigators despite heavy use of public transport in those countries. The authors write:

We speculate that this specificity may be linked to Nordic countries sharing a culture of participating in a sport related to navigation: orienteering. Invented as an official sport in the late 19th century in Sweden, the first orienteering competition open to the public was held in Norway in 1897. Since then, it has been more popular in Nordic countries than anywhere else in the world, and is taught in many schools [26]. We found that ‘orienteering world championship’ country results significantly correlated with countries’ CM (Pearson’s correlation ρ = .55, p = .01), even after correcting for GDP per capita (see Extended Data Fig. 15). Future targeted research will be required to evaluate the impact of cultural activities on navigation skill.

I suggest a different causal relationship: people make hobbies out of things they’re already good at and enjoy doing, rather than things they’re bad at.



Please note that the study doesn’t look at a big chunk of countries, like most of Africa. Being at the bottom in navigational abilities in this study by no means indicates that a country is at the bottom globally–given the trends already present in the data, it is likely that the poorer countries that weren’t included in the study would do even worse.