How to Minimize “Emotional Labor” and “Mental Load”: A Guide for Frazzled Women

A comic strip in the Guardian recently alerted me to the fact that many women are exhausted from the “Mental Load” of thinking about things and need their husbands to pitch in and help. Go ahead and read it.

Whew. There’s a lot to unpack here:

  1. Yes, you have to talk to men. DO NOT EXPECT OTHER PEOPLE TO KNOW WHAT YOU ARE THINKING. Look, if I can get my husband to help me when I need it, you certainly can too. That or you married the wrong man.
  2. Get a dayplanner and write things like “grocery lists” and doctors appointments in it. There’s probably one built into your phone.

There, I solved your problems.

That said, female anxiety (at least in our modern world) appears to be a real thing:

(though American Indians are the real untold story in this graph.)

According to the America’s State of Mind Report (PDF):

Medco data shows that antidepressants are the most commonly used mental health medications and that women have the highest utilization rates.  In 2010, 21 percent of women ages 20 and older were using an antidepressant.  … Men’s use of antidepressants is almost half that of women, but has also been on the rise with a 28 percent increase over the past decade. …

Anxiety disorders are the most common psychiatric illnesses affecting children and adults. … Although anxiety disorders are highly treatable, only about one‐third of sufferers receive treatment. …

Medco data shows that women have the highest utilization rate of anti‐anxiety medications; in
fact, 11 percent of middle‐aged women (ages 45‐64) were on an anti‐anxiety drug treatment in
2010, nearly twice the rate of their male counterparts (5.7 percent).

And based on the age group data, women in their prime working years (but waning childbearing years) have even higher rates of mental illness. (Adult women even take ADHD medicine at slightly higher rates than adult men.)

What causes this? Surely 20% of us–one in 5–can’t actually be mentally ill, can we? Is it biology or culture? Or perhaps a mismatch between biology and culture?

Or perhaps we should just scale back a little, and when we have friends over for dinner, just order a pizza instead of trying to cook two separate meals?

But if you think that berating your husband for merely taking a bottle out of the dishwasher when you asked him to get a bottle out of the dishwasher (instead of realizing this was code for “empty the entire dishwasher”) will make you happier, think again. “Couples who share the workload are more likely to divorce, study finds“:

Divorce rates are far higher among “modern” couples who share the housework than in those where the woman does the lion’s share of the chores, a Norwegian study has found. …

Norway has a long tradition of gender equality and childrearing is shared equally between mothers and fathers in 70 per cent of cases.But when it comes to housework, women in Norway still account for most of it in seven out of 10 couples. The study emphasised women who did most of the chores did so of their own volition and were found to be as “happy” those in “modern” couples. …

The researchers expected to find that where men shouldered more of the burden, women’s happiness levels were higher. In fact they found that it was the men who were happier while their wives and girlfriends appeared to be largely unmoved.

Those men who did more housework generally reported less work-life conflict and were scored slightly higher for wellbeing overall.

Theory: well-adjusted people who love each other are happy to do what it takes to keep the household running and don’t waste time passive-aggressively trying to convince their spouse that he’s a bad person for not reading her mind.

Now let’s talk about biology. The author claims,

Of course, there’s nothing genetic or innate about this behavior. We’re not born with an all-consuming passion for clearing tables, just like boys aren’t born with an utter disinterest for thing lying around.

Of course, the author doesn’t cite any papers from the fields of genetics or behavior psychology to back up her claims–just like she feels entitled to claim that other people should read her mind and absurdly thinks that a good project manager at work doesn’t bother to tell their team what needs to be done, she doesn’t feel any compulsion to cite any proof of her claims. Science says s. We know because some cartoonist on the internet claimed it did.

Over in reality-land, when we make scientific claims about things like genetics, we cite our sources. And women absolutely have an instinct for cleaning things: the Nesting Instinct. No, it isn’t present when we’re born. It kicks in when we’re pregnant–often shortly before going into labor. Here’s an actual scientific paper on the Nesting Instinct published in the scientific journal Evolution and Human Behavior:

In altricial mammals, “nesting” refers to a suite of primarily maternal behaviours including nest-site selection, nest building and nest defense, and the many ways that nonhuman animals prepare themselves for parturition are well studied. In contrast, little research has considered pre-parturient preparation behaviours in women from a functional perspective.

According to the university’s press release about the study:

The overwhelming urge that drives many pregnant women to clean, organize and get life in order—otherwise known  as nesting—is not irrational, but an adaptive behaviour stemming from humans’ evolutionary past.

Researchers from McMaster University suggest that these behaviours—characterized by unusual bursts of energy and a compulsion to organize the household—are a result of a mechanism to protect and prepare for the unborn baby.

Women also become more selective about the company they keep, preferring to spend time only with people they trust, say researchers.

In short, having control over the environment is a key feature of preparing for childbirth, including decisions about where the birth will take place and who will be welcome.

“Nesting is not a frivolous activity,” says Marla Anderson, lead author of the study and a graduate student in the Department of Psychology, Neuroscience & Behaviour.  “We have found that it peaks in the third trimester as the birth of the baby draws near and is an important task that probably serves the same purpose in women as it does in other animals.”

Even Wikipeidia cites a number of sources on the subject:

Nesting behaviour refers to an instinct or urge in pregnant animals caused by the increase of estradiol (E2) [1] to prepare a home for the upcoming newborn(s). It is found in a variety of animals such as birds, fish, squirrels, mice and pigs as well as humans.[2][3]

Nesting is pretty much impossible to miss if you’ve ever been pregnant or around pregnant women.

Of course, this doesn’t prove the instinct persists (though in my personal case it definitely did.)

By the way, estradiol is a fancy name for estrogen, which is found in much higher levels in women than men. (Just to be rigorous, here’s data on estrogen levels in normal men and women.)

So if high estradiol levels make a variety of mammals–including humans–want to clean things, and women between puberty and menopause consistently have higher levels of estrogen than men, then it seems fairly likely that women actually do have, on average, a higher innate, biological, instinctual, even genetic urge to clean and organize their homes than men do.

But returning to the comic, the author claims:

But we’re born into a society in which very early on, we’re given dolls and miniature vacuum cleaners, and in which it seems shameful for boys to like those same toys.

What bollocks. I used to work at a toystore. Yes, we stocked toy vacuum cleaners and the like in a “Little Helpers” set. We never sold a single one, and I worked there over Christmas. (Great times.)

I am always on the lookout for toys my kids would enjoy and receive constant feedback on whether they like my choices. (“A book? Why did Santa bring me a book? Books are boring!”)

I don’t spend money getting more of stuff my kids aren’t interested in. A child who doesn’t like dolls isn’t going to get a bunch of dolls and be ordered to sit and play with them and nothing else. A child who doesn’t like trucks isn’t going to get a bunch of trucks.

Assuming that other parents are neither stupid (unable to tell which toys their children like) nor evil (forcing their children to play with specific toys even though they know they don’t like them,) I conclude that children’s toys reflect the children’s actual preferences, not the parents’ (for goodness’s sakes, it if it were up to me, I’d socialize my children to be super-geniuses who spend all of their time reading textbooks and whose toys are all science and math manipulatives, not toy dump trucks!)

Even young rhesus monkeys–who cannot talk and obviously have not been socialized into human gender norms–have the same gendered toy preferences as humans:

We compared the interactions of 34 rhesus monkeys, living within a 135 monkey troop, with human wheeled toys and plush toys. Male monkeys, like boys, showed consistent and strong preferences for wheeled toys, while female monkeys, like girls, showed greater variability in preferences. Thus, the magnitude of preference for wheeled over plush toys differed significantly between males and females. The similarities to human findings demonstrate that such preferences can develop without explicit gendered socialization.

Young female chimps also make their own dolls:

Now new research suggests that such gender-driven desires are also seen in young female chimpanzees in the wild—a behavior that possibly evolved to make the animals better mothers, experts say.

Young females of the Kanyawara chimpanzee community in Kibale National Park, Uganda, use sticks as rudimentary dolls and care for them like the group’s mother chimps tend to their real offspring. The behavior, which was very rarely observed in males, has been witnessed more than a hundred times over 14 years of study.

In Jane Goodall’s revolutionary research on the Gombe Chimps, she noted the behavior of young females who often played with or held their infant siblings, in contrast to young males who generally preferred not to.

And just as estradiol levels have an effect on how much cleaning women want to do, so androgen levels have an effect on which toys children prefer to play with:

Gonadal hormones, particularly androgens, direct certain aspects of brain development and exert permanent influences on sex-typical behavior in nonhuman mammals. Androgens also influence human behavioral development, with the most convincing evidence coming from studies of sex-typical play. Girls exposed to unusually high levels of androgens prenatally, because they have the genetic disorder, congenital adrenal hyperplasia (CAH), show increased preferences for toys and activities usually preferred by boys, and for male playmates, and decreased preferences for toys and activities usually preferred by girls. Normal variability in androgen prenatally also has been related to subsequent sex-typed play behavior in girls, and nonhuman primates have been observed to show sex-typed preferences for human toys. These findings suggest that androgen during early development influences childhood play behavior in humans at least in part by altering brain development.

But the author of the comic strip would like us to believe that gender roles are a result of watching the wrong stuff on TV:

And in which culture and media essentially portray women as mothers and wives, while men are heroes who go on fascinating adventures away from home.

I don’t know about you, but I grew up in the Bad Old Days of the 80s when She-Ra, Princess of Power, was kicking butt on TV; little girls were being magically transported to Ponyland to fight evil monsters: and Rainbow Bright defeated the evil King of Shadows and saved the Color Kids.

 

If you’re older than me, perhaps you grew up watching Wonder Woman (first invented in 1941) and Leia Skywalker; and if you’re younger, Dora the Explorer and Katniss Everdeen.

If you can’t find adventurous female characters in movies or TV, YOU AREN’T LOOKING.

I mentioned this recently: it’s like the Left has no idea what the past–anytime before last Tuesday–actually contained. Somehow the 60s, 70s, 80s, 90s, and 2000s have entirely disappeared, and they live in a timewarp where we are connected directly to the media and gender norms of over half a century ago.

Enough. The Guardian comic is a load of entitled whining from someone who actually thinks that other people are morally obligated to try to read her mind. She has the maturity of a bratty teenager (“You should have known I hate this band!”) and needs to learn how to actually communicate with others instead of complaining that it’s everyone else who has a problem.

/fin.

Testosterone metabolization, autism, male brain, and female identity

I began this post intending to write about testosterone metabolization in autism and possible connections with transgender identity, but realized halfway through that I didn’t actually know whether the autist-trans connection was primarily male-to-female or female-to-male. I had assumed that the relevant population is primarily MtF because both autists and trans people are primarily male, but both groups do have female populations that are large enough to contribute significantly. Here’s a sample of the data I’ve found so far:

A study conducted by a team of British scientists in 2012 found that of a pool of individuals not diagnosed on the autism spectrum, female-to-male (FTM) transgender people have higher rates of autistic features than do male-to-female (MTF) transgender people or cisgender males and females. Another study, which looked at children and adolescents admitted to a gender identity clinic in the Netherlands, found that almost 8 percent of subjects were also diagnosed with ASD.

Note that both of these studies are looking at trans people and assessing whether or not they have autism symptoms, not looking at autists and asking if they have trans symptoms. Given the characterization of autism as “extreme male brain” and that autism is diagnosed in males at about 4x the rate of females, the fact that there is some overlap between “women who think they think like men” and “traits associated with male thought patterns” is not surprising.

If the reported connection between autism and trans identity is just “autistic women feel like men,” that’s pretty non-mysterious and I just wasted an afternoon.

Though the data I have found so far still does not look directly at autists and ask how many of them have trans symptoms, the wikipedia page devoted to transgender and transsexual computer programmers lists only MtFs and no FtMs. Whether this is a pattern throughout the wider autism community, it definitely seems to be a thing among programmers. (Relevant discussion.)

So, returning to the original post:

Autism contains an amusing contradiction: on the one hand, autism is sometimes characterized as “extreme male brain,” and on the other hand, (some) autists (may be) more likely than neurotypicals to self-identify as transwomen–that is, biological men who see themselves as women. This seems contradictory: if autists are more masculine, mentally, than the average male, why don’t they identify as football players, army rangers, or something else equally masculine? For that matter, why isn’t a group with “extreme male brains” regarded as more, well, masculine?

(And if autists have extreme male brains, does that mean football players don’t? Do football players have more feminine brains than autists? Do colorless green ideas sleep furiously? DO WORDS MEAN?)

*Ahem*

In favor of the “extreme male brain” hypothesis, we have evidence that testosterone is important for certain brain functions, like spacial recognition, we have articles like this one: Testosterone and the brain:

Gender differences in spatial recognition, and age-related declines in cognition and mood, point towards testosterone as an important modulator of cerebral functions. Testosterone appears to activate a distributed cortical network, the ventral processing stream, during spatial cognition tasks, and addition of testosterone improves spatial cognition in younger and older hypogonadal men. In addition, reduced testosterone is associated with depressive disorders.

(Note that women also suffer depression at higher rates than men.)

So people with more testosterone are better at spacial cognition and other tasks that “autistic” brains typically excel at, and brains with less testosterone tend to be moody and depressed.

But hormones are tricky things. Where do they come from? Where do they go? How do we use them?

According to Wikipedia:

During the second trimester [of pregnancy], androgen level is associated with gender formation.[13] This period affects the femininization or masculinization of the fetus and can be a better predictor of feminine or masculine behaviours such as sex typed behaviour than an adult’s own levels. A mother’s testosterone level during pregnancy is correlated with her daughter’s sex-typical behavior as an adult, and the correlation is even stronger than with the daughter’s own adult testosterone level.[14]

… Early infancy androgen effects are the least understood. In the first weeks of life for male infants, testosterone levels rise. The levels remain in a pubertal range for a few months, but usually reach the barely detectable levels of childhood by 4–6 months of age.[15][16] The function of this rise in humans is unknown. It has been theorized that brain masculinization is occurring since no significant changes have been identified in other parts of the body.[17] The male brain is masculinized by the aromatization of testosterone into estrogen, which crosses the blood–brain barrier and enters the male brain, whereas female fetuses have α-fetoprotein, which binds the estrogen so that female brains are not affected.[18]

(Bold mine.)

Let’s re-read that: the male brain is masculinized by the aromatization of testosterone into estrogen.

If that’s not a weird sentence, I don’t know what is.

Let’s hop over to the scientific literature, eg, Estrogen Actions in the Brain and the Basis for Differential Action in Men and Women: A Case for Sex-Specific Medicines:

Burgeoning evidence now documents profound effects of estrogens on learning, memory, and mood as well as neurodevelopmental and neurodegenerative processes. Most data derive from studies in females, but there is mounting recognition that estrogens play important roles in the male brain, where they can be generated from circulating testosterone by local aromatase enzymes or synthesized de novo by neurons and glia. Estrogen-based therapy therefore holds considerable promise for brain disorders that affect both men and women. However, as investigations are beginning to consider the role of estrogens in the male brain more carefully, it emerges that they have different, even opposite, effects as well as similar effects in male and female brains. This review focuses on these differences, including sex dimorphisms in the ability of estradiol to influence synaptic plasticity, neurotransmission, neurodegeneration, and cognition, which, we argue, are due in a large part to sex differences in the organization of the underlying circuitry.

Hypothesis: the way testosterone works in the brain (where we both do math and “feel” male or female) and the way it works in the muscles might be very different.

Do autists actually differ from other people in testosterone (or other hormone) levels?

In Elevated rates of testosterone-related disorders in women with autism spectrum conditions, researchers surveyed autistic women and mothers of autistic children about various testosterone-related medical conditions:

Compared to controls, significantly more women with ASC [Autism Spectrum Conditions] reported (a) hirsutism, (b) bisexuality or asexuality, (c) irregular menstrual cycle, (d) dysmenorrhea, (e) polycystic ovary syndrome, (f) severe acne, (g) epilepsy, (h) tomboyism, and (i) family history of ovarian, uterine, and prostate cancers, tumors, or growths. Compared to controls, significantly more mothers of ASC children reported (a) severe acne, (b) breast and uterine cancers, tumors, or growths, and (c) family history of ovarian and uterine cancers, tumors, or growths.

Androgenic Activity in Autism has an unfortunately low number of subjects (N=9) but their results are nonetheless intriguing:

Three of the children had exhibited explosive aggression against others (anger, broken objects, violence toward others). Three engaged in self-mutilations, and three demonstrated no aggression and were in a severe state of autistic withdrawal. The appearance of aggression against others was associated with having fewer of the main symptoms of autism (autistic withdrawal, stereotypies, language dysfunctions).

Three of their subjects (they don’t say which, but presumably from the first group,) had abnormally high testosterone levels (including one of the girls in the study.) The other six subjects had normal androgen levels.

This is the first report of an association between abnormally high androgenic activity and aggression in subjects with autism. Although a previously reported study did not find group mean elevations in plasma testosterone in prepubertal autistic subjects (4), it appears here that in certain autistic individuals, especially those in puberty, hyperandrogeny may play a role in aggressive behaviors. Also, there appear to be distinct clinical forms of autism that are based on aggressive behaviors and are not classified in DSM-IV. Our preliminary findings suggest that abnormally high plasma testosterone concentration is associated with aggression against others and having fewer of the main autistic symptoms.

So, some autists have do have abnormally high testosterone levels, but those same autists are less autistic, overall, than other autists. More autistic behavior, aggression aside, is associated with normal hormone levels. Probably.

But of course that’s not fetal or early infancy testosterone levels. Unfortunately, it’s rather difficult to study fetal testosterone levels in autists, as few autists were diagnosed as fetuses. However, Foetal testosterone and autistic traits in 18 to 24-month-old children comes close:

Levels of FT [Fetal Testosterone] were analysed in amniotic fluid and compared with autistic traits, measured using the Quantitative Checklist for Autism in Toddlers (Q-CHAT) in 129 typically developing toddlers aged between 18 and 24 months (mean ± SD 19.25 ± 1.52 months). …

Sex differences were observed in Q-CHAT scores, with boys scoring significantly higher (indicating more autistic traits) than girls. In addition, we confirmed a significant positive relationship between FT levels and autistic traits.

I feel like this is veering into “we found that boys score higher on a test of male traits than girls did” territory, though.

In Polymorphisms in Genes Involved in Testosterone Metabolism in Slovak Autistic Boys, researchers found:

The present study evaluates androgen and estrogen levels in saliva as well as polymorphisms in genes for androgen receptor (AR), 5-alpha reductase (SRD5A2), and estrogen receptor alpha (ESR1) in the Slovak population of prepubertal (under 10 years) and pubertal (over 10 years) children with autism spectrum disorders. The examined prepubertal patients with autism, pubertal patients with autism, and prepubertal patients with Asperger syndrome had significantly increased levels of salivary testosterone (P < 0.05, P < 0.01, and P < 0.05, respectively) in comparison with control subjects. We found a lower number of (CAG)n repeats in the AR gene in boys with Asperger syndrome (P < 0.001). Autistic boys had an increased frequency of the T allele in the SRD5A2 gene in comparison with the control group. The frequencies of T and C alleles in ESR1 gene were comparable in all assessed groups.

What’s the significance of CAG repeats in the AR gene? Apparently they vary inversely with sensitivity to androgens:

Individuals with a lower number of CAG repeats exhibit higher AR gene expression levels and generate more functional AR receptors increasing their sensitivity to testosterone…

Fewer repeats, more sensitivity to androgens. The SRD5A2 gene is also involved in testosterone metabolization, though I’m not sure exactly what the T allele does relative to the other variants.

But just because there’s a lot of something in the blood (or saliva) doesn’t mean the body is using it. Diabetics can have high blood sugar because their bodies lack the necessary insulin to move the sugar from the blood, into their cells. Fewer androgen receptors could mean the body is metabolizing testosterone less effectively, which in turn leaves more of it floating in the blood… Biology is complicated.

What about estrogen and the autistic brain? That gets really complicated. According to Sex Hormones in Autism: Androgens and Estrogens Differentially and Reciprocally Regulate RORA, a Novel Candidate Gene for Autism:

Here, we show that male and female hormones differentially regulate the expression of a novel autism candidate gene, retinoic acid-related orphan receptor-alpha (RORA) in a neuronal cell line, SH-SY5Y. In addition, we demonstrate that RORA transcriptionally regulates aromatase, an enzyme that converts testosterone to estrogen. We further show that aromatase protein is significantly reduced in the frontal cortex of autistic subjects relative to sex- and age-matched controls, and is strongly correlated with RORA protein levels in the brain.

If autists are bad at converting testosterone to estrogen, this could leave extra testosterone floating around in their blood… but doens’t explain their supposed “extreme male brain.” Here’s another study on the same subject, since it’s confusing:

Comparing the brains of 13 children with and 13 children without autism spectrum disorder, the researchers found a 35 percent decrease in estrogen receptor beta expression as well as a 38 percent reduction in the amount of aromatase, the enzyme that converts testosterone to estrogen.

Levels of estrogen receptor beta proteins, the active molecules that result from gene expression and enable functions like brain protection, were similarly low. There was no discernable change in expression levels of estrogen receptor alpha, which mediates sexual behavior.

I don’t know if anyone has tried injecting RORA-deficient mice with estrogen, but here is a study about the effects of injecting reelin-deficient mice with estrogen:

The animals in the new studies, called ‘reeler’ mice, have one defective copy of the reelin gene and make about half the amount of reelin compared with controls. …

Reeler mice with one faulty copy serve as a model of one of the most well-established neuro-anatomical abnormalities in autism. Since the mid-1980s, scientists have known that people with autism have fewer Purkinje cells in the cerebellum than normal. These cells integrate information from throughout the cerebellum and relay it to other parts of the brain, particularly the cerebral cortex.

But there’s a twist: both male and female reeler mice have less reelin than control mice, but only the males lose Purkinje cells. …

In one of the studies, the researchers found that five days after birth, reeler mice have higher levels of testosterone in the cerebellum compared with genetically normal males3.

Keller’s team then injected estradiol — a form of the female sex hormone estrogen — into the brains of 5-day-old mice. In the male reeler mice, this treatment increases reelin levels in the cerebellum and partially blocks Purkinje cell loss. Giving more estrogen to female reeler mice has no effect — but females injected with tamoxifen, an estrogen blocker, lose Purkinje cells. …

In another study, the researchers investigated the effects of reelin deficiency and estrogen treatment on cognitive flexibility — the ability to switch strategies to solve a problem4. …

“And we saw indeed that the reeler mice are slower to switch. They tend to persevere in the old strategy,” Keller says. However, male reeler mice treated with estrogen at 5 days old show improved cognitive flexibility as adults, suggesting that the estrogen has a long-term effect.

This still doesn’t explain why autists would self-identify as transgender women (mtf) at higher rates than average, but it does suggest that any who do start hormone therapy might receive benefits completely independent of gender identity.

Let’s stop and step back a moment.

Autism is, unfortunately, badly defined. As the saying goes, if you’ve met one autist, you’ve met one autist. There are probably a variety of different, complicated things going on in the brains of different autists simply because a variety of different, complicated conditions are all being lumped together under a single label. Any mental disability that can include both non-verbal people who can barely dress and feed themselves and require lifetime care and billionaires like Bill Gates is a very badly defined condition.

(Unfortunately, people diagnose autism with questionnaires that include questions like “Is the child pedantic?” which could be equally true of both an autistic child and a child who is merely very smart and has learned more about a particular subject than their peers and so is responding in more detail than the adult is used to.)

The average autistic person is not a programmer. Autism is a disability, and the average diagnosed autist is pretty darn disabled. Among the people who have jobs and friends but nonetheless share some symptoms with formally diagnosed autists, though, programmer and the like appear to be pretty popular professions.

Back in my day, we just called these folks nerds.

Here’s a theory from a completely different direction: People feel the differences between themselves and a group they are supposed to fit into and associate with a lot more strongly than the differences between themselves and a distant group. Growing up, you probably got into more conflicts with your siblings and parents than with random strangers, even though–or perhaps because–your family is nearly identical to you genetically, culturally, and environmentally. “I am nothing like my brother!” a man declares, while simultaneously affirming that there is a great deal in common between himself and members of a race and culture from the other side of the planet. Your  coworker, someone specifically selected for the fact that they have similar mental and technical aptitudes and training as yourself, has a distinct list of traits that drive you nuts, from the way he staples papers to the way he pronounces his Ts, while the women of an obscure Afghan tribe of goat herders simply don’t enter your consciousness.

Nerds, somewhat by definition, don’t fit in. You don’t worry much about fitting into a group you’re not part of in the fist place–you probably don’t worry much about whether or not you fit in with Melanesian fishermen–but most people work hard at fitting in with their own group.

So if you’re male, but you don’t fit in with other males (say, because you’re a nerd,) and you’re down at the bottom of the highschool totem pole and feel like all of the women you’d like to date are judging you negatively next to the football players, then you might feel, rather strongly, the differences between you and other males. Other males are aggressive, they call you a faggot, they push you out of their spaces and threaten you with violence, and there’s very little you can do to respond besides retreat into your “nerd games.”

By contrast, women are polite to you, not aggressive, and don’t aggressively push you out of their spaces. Your differences with them are much less problematic, so you feel like you “fit in” with them.

(There is probably a similar dynamic at play with American men who are obsessed with anime. It’s not so much that they are truly into Japanese culture–which is mostly about quietly working hard–as they don’t fit in very well with their own culture.) (Note: not intended as a knock on anime, which certainly has some good works.)

And here’s another theory: autists have some interesting difficulties with constructing categories and making inferences from data. They also have trouble going along with the crowd, and may have fewer “mirror neurons” than normal people. So maybe autists just process the categories of “male” and “female” a little differently than everyone else, and in a small subset of autists, this results in trans identity.*

And another: maybe there are certain intersex disorders which result in differences in brain wiring/organization. (Yes, there are real interesx disorders, like Klinefelter’s, in which people have XXY chromosomes instead of XX or XY.) In a small set of cases, these unusually wired brains may be extremely good at doing certain tasks (like programming) resulting people who are both “autism spectrum” and “trans”. This is actually the theory I’ve been running with for years, though it is not incompatible with the hormonal theories discussed above.

But we are talking small: trans people of any sort are extremely rare, probably on the order of <1/1000. Even if autists were trans at 8 times the rates of non-autists, that’s still only 8/1000 or 1/125. Autists themselves are pretty rare (estimates vary, but the vast majority of people are not autistic at all,) so we are talking about a very small subset of a very small population in the first place. We only notice these correlations at all because the total population has gotten so huge.

Sometimes, extremely rare things are random chance.

Adulterations in the Feed

It’s no secret that sperm counts have been dropping like rocks over the past 70 years or so (though the trend may have recently leveled out.)

” Sperm counts in the 1940s were typically well above 100m sperm cells per millilitre, but Professor Skakkebaek found they have dropped to an average of about 60m per ml. Other studies found that between 15 and 20 per cent of young men now find themselves with sperm counts of less than 20m per ml, which is technically defined as abnormal.” — from The Independent, “Out for the count: Why levels of sperm in men are falling

While environmental effects (like smoking,) have effects on sperm counts in adults, these appear to be basically small or short-lasting. The biggest, longest-lasting effects on sperm counts appears to be the unterine environment where the future-low-sperm-count-male’s testicles were developing. Improper fetal testicle development => low sperm count for life. Eg,

“A man who smokes typically reduces his sperm count by a modest 15 per cent or so, which is probably reversible if he quits. However, a man whose mother smoked during pregnancy has a fairly dramatic decrease in sperm counts of up to 40 per cent – which also tends to be irreversible.”

What elsecould make a uterine environment hostile to testicular development?

How about too much estrogen?

I’ve posted before about Diethylstilbestrol, (or DES,)  is a synthetic nonsteroidal estrogen. Between 1940 and 1971, DES was given in large quantities to pregnant women to prevent miscarriages. Unfortunately, it turns out that pumping babies full of unnaturally high levels of estrogen might be bad for them–DES was discontinued as a medication for pregnant women because it gave their daughters cancer, (an actual epigenetic effect) and the sons appear to have high rates of transgender, transexual and intersex conditions.

Quoting the Wikipedia:

“In the 1970s and early 1980s, studies published on prenatally DES-exposed males investigated increased risk of testicular cancer, infertility and urogenital abnormalities in development, such as cryptorchidism and hypospadias.[38][39]

“… The American Association of Clinical Endocrinologists (AACE) has documented that prenatal DES exposure in males is positively linked to a condition known as hypogonadism (low testosterone levels) that may require treatment with testosterone replacement therapy.[43]

“… Research on DES sons has explored the long-standing question of whether prenatal exposure to DES in males may include sexual and gender-related behavioral effects and also intersex conditions. Dr. Scott Kerlin, a major DES researcher and founder of the DES Sons International Research Network in 1999, has documented for the past 16 years a high prevalence of individuals with confirmed prenatal DES exposure who self-identify as male-to-female transsexual, transgender, or have intersex conditions, and many individuals who report a history of experiencing difficulties with gender dysphoria.[45][46][47][48]

“… Various neurological changes occur after prenatal exposure of embryonic males to DES and other estrogenic endocrine disrupters. Animals that exhibited these structural neurological changes were also shown to demonstrate various gender-related behavioral changes (so-called “feminization of males”). Several published studies in the medical literature on psychoneuroendocrinology have examined the hypothesis that prenatal exposure to estrogens (including DES) may cause significant developmental impact on sexual differentiation of the brain, and on subsequent behavioral and gender identity development in exposed males and females.”

Here is an excerpt from a paper, published in, I think, the early 40s.

11204959_602832163153289_2313475438307907145_n

Since the image quality is low, I’ve done my best to type it up for you:

“Experimental Intersexuality: The Effects of Combined Estrogens and Androgens on the Emryonic Sexual Development of the Rat

“RR. Greene, M. W. Rurrill and A. C. Ivy

“Department of Physiology and Pharmacology, Northwestern University Medical School, Chicago, Illinois

“In previous publications the authors have reported and described in detail the effects of large doses of sex hormones on the embryonic sexual development of the rat. Androgens, when administered to the pregnant female, cause a masculinization of the female embryos (Greene, Burrill and Ivy, ’38, ’39 a). The female type of differentiation of most sexual structures is inhibited and a male type of differentiation of those structures is stimulated. Administered estrogens cause a femininization of the male embryos (Greene, Burrill and Ivy, ’38, ’40) in that they inhibit the masculine type of differentiation of some sexual structures and, instead, cause a female type of differentiation.

“…The experimental demonstration that estrogens do have a profound effect…”

What are external sources of estrogens in modern life?

Birth control pills. I know FTM trans folks birth control pills for the hormones in them. (They are often cheaper and easier to get than hormones specifically prescribed for trans folks, especially if you have a female friend.)

Can those hormones stick around in a mother’s body even after she discontinues taking the pills?

Fat and estrogen appear to be correlated:

“Other conditions that cause low estrogen levels in younger women include excessive exercise, eating disorders and too little body fat.” (source)

“Excess estrogen in the body causes weight gain around the abdomen and upper thighs. … Weight gain caused by estrogen starts a vicious cycle. Excessive body fat produces the aromatase enzyme that synthesizes estrogen, thus creating more estrogen in the body, which then promotes additional weight gain, and so on, says Hofmekler.” (source)

“Researchers have found a correlation between estrogen and weight, particularly during menopause, when estrogen levels drop, but weight tends to rise. But since fat cells can produce estrogen, the issue facing researchers is how to target the estrogen receptors that will boost energy and manage hunger and not contribute to menopause-related weight gain.” (source)

“For postmenopausal women, estrogen levels increase with increasing BMI, presumably because conversion of androgens to estrogen in adipose tissue is a primary source of estrogen…” (source)

Since Americans have been getting fatter over the past century, I’d expect estrogen levels to be up, but I’ve found no studies on the subject so far. (Also, the Wikipedia claims there’s no evidence that birth control pills make people fat.)

However, I have found quite a bit of evidence that giving synthetic estrogen to animals makes them fatter:

Picture 4

(Stilbosol is another name for DES, as you may note in the ad’s upper right hand corner.)

Since the picture quality is bad, I’ll try to type it up for you:

Ralph:

“Ralph has been feeding cattle in New York state for 20 years. He runs 300 head a year through his feed lot, buying mountain (?) calves at 400 pounds and finishing them to about 1,000 pounds.  …

“”I lean very heavily on college tests and they’re in favor of Stilbosol. The first time we tried it, back in 1955, I noticed a very definite improvement in appetite.

“”Stilbosol is a ‘must’ in our feeding operations. It has added to our profit. If it didn’t, we wouldn’t be using it.””

Dan:

“We bring our cattle into the lots around 600 pounds. Feed for about 150 days. … We feed to all weights (950 to 1150 pounds) and take a little chance from time to time and feed t heavier weights,” Dan stated.

“We get about 2.75 lbs. daily gain. And I figure Stilbosol accounts for (unreadable) to 1/2 lb. of that daily gain. …

“Does Stilbosol make us money? There’s no doubt about it! Stilbosol has revolutionized the cattle business. I guess it’s the only good break through in the last ten years.”

Bill:

“”I tested Stilbosol. Took a bunch of 315 Montana yearlings and split them up. One group was actually lighter than the other. The only change I made in their rations was the addition of Stilbosol. The lighter group received Stilbosol. I figured that the lot fed Stilbosol gained over 1 1/2 lb. per day more than the lot which had no Stilbosol.

“”With all the competition, a man can’t afford to pas up anything that will lower his cost of grain. Stilbosol is one of them.””

John:

“We were trying to find the cheapest, most efficient ration. One group of calves received a ration containing Stilbosol. Another received a similar ration without Stilbosol. The group receiving Stilbosol had a feed conversion of (I can’t tell the number, but it’s clearly a single digit followed by .4). The group receiving no Stilbosol had a feed conversion of 10.35. The Stilbosol group gained 2.49 pounds per day. The group that did not receive Stilbosol gained 2.13 pounds per day.

“With Stilbosol, we figure our cost of grain to be substantially lower than similar rations without Stilbosol.) “

Four farmers wouldn’t lie to us, would they?

Interestingly, eating large quantities of beef while pregnant was one of the things that The Independent article (linked at the top) noted was correlated with low sperm counts years down the road in the all-grown-up-fetuses.

Of course, people who eat more beef may just weigh more, or have some other factors besides adulterations in the cattle feed.

DES was also put in chicken feed, for the exact same reasons as cattle feed, until it came out that DES causes cancer in humans. It was discontinued as a feed additive in the late 70s.

These days, I don’t know what–if anything–they’re using to finish cattle, but we may note that the vast majority of cattle are still finished in feedlots where they get much fatter than they would naturally. (That is, by wandering around eating grass like they normally do.) Feedlot cattle are, to put it bluntly, unnaturally fat.

Now I’m going to do a little math. The Independent article was published in 2010, and states that the article on falling sperm rates was published 19 years prior, or in 1991. The study therefore compared men in the 1940s to men in the 1980s and 1990. Men in the 1940s were fetuses before the age of feedlots, birth control pills, DES, or DES-fed cattle and chicken. Young(ish) men in 1990, by contrast, were born between 1950 and 1970–all within the era of feedlots, BCPs, DES, and DES-fed cattle and chicken.

If it is true that sperm counts have stabilized since the 90s, that is a point potentially in favor of my theory, since after the 70s, DES was basically gone.

This is all me speculating out loud, of course.